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6.2 PROPERTIES OF LOGARITHMS

In Section 6.1, we introduced the logarithmic functions as inverses of exponential functions and
discussed a few of their functional properties from that perspective. In this section, we explore
the algebraic properties of logarithms. Historically, these have played a huge role in the scientific
development of our society since, among other things, they were used to develop analog computing
devices called slide rules which enabled scientists and engineers to perform accurate calculations
leading to such things as space travel and the moon landing. As we shall see shortly, logs inherit
analogs of all of the properties of exponents you learned in Elementary and Intermediate Algebra.
We first extract two properties from Theorem 6.2 to remind us of the definition of a logarithm as
the inverse of an exponential function.

Theorem 6.3. (Inverse Properties of Exponential and Log Functions) Let b > 0, b # 1.
o b® = c if and only if log,(c) = a

e log, (b*) = x for all  and b°%(®) = g for all 2 > 0

Next, we spell out what it means for exponential and logarithmic functions to be one-to-one.

Theorem 6.4. (One-to-one Properties of Exponential and Log Functions) Let f(z) =
b* and g(x) = logy(z) where b > 0, b # 1. Then f and g are one-to-one. In other words:

e b = b" if and only if u = w for all real numbers u and w.

e logy(u) = logy(w) if and only if u = w for all real numbers u > 0, w > 0.

We now state the algebraic properties of exponential functions which will serve as a basis for the
properties of logarithms. While these properties may look identical to the ones you learned in
Elementary and Intermediate Algebra, they apply to real number exponents, not just rational
exponents. Note that in the theorem that follows, we are interested in the properties of exponential
functions, so the base b is restricted to b > 0, b # 1. An added benefit of this restriction is that it

eliminates the pathologies discussed in Section 5.3 when, for example, we simplified (mz/ 3)3/2 and

obtained |z| instead of what we had expected from the arithmetic in the exponents, x! = x.

Theorem 6.5. (Algebraic Properties of Exponential Functions) Let f(xz) = b* be an
exponential function (b > 0, b # 1) and let u and w be real numbers.

e Product Rule: f(u+w) = f(u)f(w). In other words, b*™% = p*p*

¢ Quotient Rule: f(u—w) = f(u) . In other words, b“~% = g—w

f(w)
e Power Rule: (f(u))" = f(uw). In other words, (b*)" = b*¥

While the properties listed in Theorem 6.5 are certainly believable based on similar properties of
integer and rational exponents, the full proofs require Calculus. To each of these properties of
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exponential functions corresponds an analogous property of logarithmic functions. We list these
below in our next theorem.

Theorem 6.6. (Algebraic Properties of Logarithm Functions) Let g(z) = log,(z) be a
logarithmic function (b > 0, b # 1) and let w > 0 and w > 0 be real numbers.

e Product Rule: g(uw) = g(u) + g(w). In other words, log,(uw) = logy(u) + logy(w)

¢ Quotient Rule: g (E> = g(u) — g(w). In other words, log, (E) = logy (u) — logy (w)
w w

e Power Rule: g (u") = wg(u). In other words, log, (u") = wlog(u)

There are a couple of different ways to understand why Theorem 6.6 is true. Consider the product
rule: logy(uw) = logy(u) + log,(w). Let a = logy(uw), ¢ = logy(u), and d = logy(w). Then, by
definition, b* = ww, b = u and b% = w. Hence, b* = uw = bb¢ = b4, so that b* = b°t¢. By
the one-to-one property of b*, we have a = ¢+ d. In other words, log,(uw) = log,(u) + log,(w).
The remaining properties are proved similarly. From a purely functional approach, we can see
the properties in Theorem 6.6 as an example of how inverse functions interchange the roles of
inputs in outputs. For instance, the Product Rule for exponential functions given in Theorem 6.5,
flu+w) = f(u)f(w), says that adding inputs results in multiplying outputs. Hence, whatever f~*
is, it must take the products of outputs from f and return them to the sum of their respective inputs.
Since the outputs from f are the inputs to f~! and vice-versa, we have that that f~!' must take
products of its inputs to the sum of their respective outputs. This is precisely what the Product Rule
for Logarithmic functions states in Theorem 6.6: g(uw) = g(u)+ g(w). The reader is encouraged to
view the remaining properties listed in Theorem 6.6 similarly. The following examples help build
familiarity with these properties. In our first example, we are asked to ‘expand’ the logarithms.
This means that we read the properties in Theorem 6.6 from left to right and rewrite products
inside the log as sums outside the log, quotients inside the log as differences outside the log, and
powers inside the log as factors outside the log.!

Example 6.2.1. Expand the following using the properties of logarithms and simplify. Assume
when necessary that all quantities represent positive real numbers.

2 2
1. log, (8> 2. logy,1 (102°) 3. In (3>

x exr

4/ 10022
yz°

4. log 5. logyyy (x2 — 4)

Solution.

1. To expand logy (%), we use the Quotient Rule identifying « = 8 and w = z and simplify.

nterestingly enough, it is the exact opposite process (which we will practice later) that is most useful in Algebra,
the utility of expanding logarithms becomes apparent in Calculus.



6.2 PROPERTIES OF LOGARITHMS 439

8
log, <x> log,(8) — logy () Quotient Rule
= 3 —logy(z) Since 23 = 8
= —logy(z) +3

2. In the expression logg (10x2), we have a power (the z?) and a product. In order to use the
Product Rule, the entire quantity inside the logarithm must be raised to the same exponent.
Since the exponent 2 applies only to the =, we first apply the Product Rule with v = 10 and
w = x2. Once we get the x? by itself inside the log, we may apply the Power Rule with v =
and w = 2 and simplify.

logy  (102%) = logg(10) + logy ; (2?) Product Rule
= logg.1(10) + 2logy () Power Rule
= —1+2logy(x) Since (0.1)7! =10

= 210%0.1(33) -1

3
to the entire quantity inside the logarithm, we begin Witﬁxthe Power Rule with u = % and
w = 2. Next, we see the Quotient Rule is applicable, with u = 3 and w = ex, so we replace
In (2) with the quantity In(3) — In(ez). Since In () is being multiplied by 2, the entire
quantity In(3) —In(ex) is multiplied by 2. Finally, we apply the Product Rule with © = e and
w = z, and replace In(ex) with the quantity In(e) 4 In(z), and simplify, keeping in mind that
the natural log is log base e.

. We have a power, quotient and product occurring in ln( )2. Since the exponent 2 applies

2
In <3> = 2In 3> Power Rule
exr exr
= 2[In(3) — In(ex)] Quotient Rule
= 2In(3) — 21In(ex)

—2[ln(e) + In(z)] Product Rule

—2—2In(x) Since el = ¢

= —2In(z)+2In(3) — 2

—

4. In Theorem 6.6, there is no mention of how to deal with radicals. However, thinking back to

Definition 5.5, we can rewrite the cube root as a % exponent. We begin by using the Power
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Rule?, and we keep in mind that the common log is log base 10.

,/ 10022 (100x2>1/3
log

1 2
= 1log( 00 > Power Rule

Quotient Rule

3 ]

3 )

% [log(lOO) + log (7;2)] — % [log(y) + log (25)] Product Rule

= %log(lOO) + %log (xQ) — %log(y) — %log (z5)

|
2
3
2
3

log(100) + 2 log(z) — % log(y) — 5 log(= Power Rule
(

+ glog(x) - %log y) — 21og(z) Since 102 = 100

log(z) — 3 log(y) — §log(2) + 3

5. At first it seems as if we have no means of simplifying log;; (1:2 — 4), since none of the
properties of logs addresses the issue of expanding a difference inside the logarithm. However,
we may factor 2 — 4 = (z + 2)(z — 2) thereby introducing a product which gives us license
to use the Product Rule.

logi17 (2% —4) = logi7[(z +2)(z — 2)] Factor
= logy7(x +2) +logy17(x —2) Product Rule
O

A couple of remarks about Example 6.2.1 are in order. First, while not explicitly stated in the above
example, a general rule of thumb to determine which log property to apply first to a complicated
problem is ‘reverse order of operations.” For example, if we were to substitute a number for x into
the expression logg ; (10:62), we would first square the x, then multiply by 10. The last step is the
multiplication, which tells us the first log property to apply is the Product Rule. In a multi-step
problem, this rule can give the required guidance on which log property to apply at each step.
The reader is encouraged to look through the solutions to Example 6.2.1 to see this rule in action.
Second, while we were instructed to assume when necessary that all quantities represented positive
real numbers, the authors would be committing a sin of omission if we failed to point out that, for
instance, the functions f(z) = log, ;7 (% — 4) and g(z) = log;;7(z+2) +log;;7(z —2) have different
domains, and, hence, are different functions. We leave it to the reader to verify the domain of f
is (—00, —2) U (2, 00) whereas the domain of g is (2,00). In general, when using log properties to

2 At this point in the text, the reader is encouraged to carefully read through each step and think of which quantity
is playing the role of u and which is playing the role of w as we apply each property.



6.2 PROPERTIES OF LOGARITHMS 441

expand a logarithm, we may very well be restricting the domain as we do so. One last comment
before we move to reassembling logs from their various bits and pieces. The authors are well aware
of the propensity for some students to become overexcited and invent their own properties of logs
like logy 7 (z* — 4) = logy;7 (2*) — logy17(4), which simply isn’t true, in general. The unwritten®
property of logarithms is that if it isn’t written in a textbook, it probably isn’t true.

Example 6.2.2. Use the properties of logarithms to write the following as a single logarithm.
1. logg(z — 1) — logs(x + 1) 2. log(z) + 2log(y) — log(2)
3. 4logy(z) + 3 4. —In(z) — %

Solution. Whereas in Example 6.2.1 we read the properties in Theorem 6.6 from left to right to
expand logarithms, in this example we read them from right to left.

1. The difference of logarithms requires the Quotient Rule: logs(z—1)—logs(z+1) = logs (x +1)

2. In the expression, log(x) + 2log(y) —log(z), we have both a sum and difference of logarithms.
However, before we use the product rule to combine log(z) + 2log(y), we note that we need
to somehow deal with the coefficient 2 on log(y). This can be handled using the Power Rule.
We can then apply the Product and Quotient Rules as we move from left to right. Putting it
all together, we have

log(z) + 2log(y) — log(z) = log(z) + log (y?) — log(2) Power Rule
= log (zy?) — log(2) Product Rule
= log (xz ) Quotient Rule
3. We can certainly get started rewriting 4log,(z) + 3 by applying the Power Rule to 4 logs(x)

to obtain log, (ac4), but in order to use the Product Rule to handle the addition, we need to
rewrite 3 as a logarithm base 2. From Theorem 6.3, we know 3 = log, (23), so we get

4logy(z) +3 = logy (z*) + Power Rule
log, (z*) + log2 (23) Since 3 = log, (2°)

logy (1‘4) + log,y (8
= logy (81:4) Product Rule

3The authors relish the irony involved in writing what follows.
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4. To get started with —In(z) — 1, we rewrite —In(z) as (—1) In(z). We can then use the Power

Rule to obtain (—1)In(z) = In (z'). In order to use the Quotient Rule, we need to write 3
as a natural logarithm. Theorem 6.3 gives us 1 = In (61/2) = In (y/e). We have

—In(x) — % = (=1)In(z) — %

= In (xfl — % Power Rule

$> Quotient Rule

O

As we would expect, the rule of thumb for re-assembling logarithms is the opposite of what it
was for dismantling them. That is, if we are interested in rewriting an expression as a single
logarithm, we apply log properties following the usual order of operations: deal with multiples of
logs first with the Power Rule, then deal with addition and subtraction using the Product and
Quotient Rules, respectively. Additionally, we find that using log properties in this fashion can
increase the domain of the expression. For example, we leave it to the reader to verify the domain

of f(z) = logs(z—1)—logs(z+1) is (1, 00) but the domain of g(z) = logs (Lﬁ) is (—o0, —1)U(1, 00).
We will need to keep this in mind when we solve equations involving logarithms in Section 6.4 - it

is precisely for this reason we will have to check for extraneous solutions.

The two logarithm buttons commonly found on calculators are the ‘LOG’ and ‘LN’ buttons which
correspond to the common and natural logs, respectively. Suppose we wanted an approximation to
log, (7). The answer should be a little less than 3, (Can you explain why?) but how do we coerce
the calculator into telling us a more accurate answer? We need the following theorem.

Theorem 6.7. (Change of Base Formulas) Let a,b > 0, a,b # 1.

o % = b*198:(@) for all real numbers z.

_ logy()

= for all real numbers z > 0.
logy,(a)

e log,(x)

The proofs of the Change of Base formulas are a result of the other properties studied in this
section. If we start with b*1°8(%) and use the Power Rule in the exponent to rewrite zlog,(a) as
logy, (a®) and then apply one of the Inverse Properties in Theorem 6.3, we get

prlogy(a) — plogy(a”) — 4

)
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as required. To verify the logarithmic form of the property, we also use the Power Rule and an
Inverse Property. We note that

log, (x) - logy (@) = logy ('*%(*)) = log, (a),

and we get the result by dividing through by log,(a). Of course, the authors can’t help but point
out the inverse relationship between these two change of base formulas. To change the base of
an exponential expression, we multiply the input by the factor log,(a). To change the base of a
logarithmic expression, we divide the output by the factor logy(a). While, in the grand scheme
of things, both change of base formulas are really saying the same thing, the logarithmic form is
the one usually encountered in Algebra while the exponential form isn’t usually introduced until
Calculus.* What Theorem 6.7 really tells us is that all exponential and logarithmic functions are
just scalings of one another. Not only does this explain why their graphs have similar shapes, but
it also tells us that we could do all of mathematics with a single base - be it 10, e, 42, or 117. Your
Calculus teacher will have more to say about this when the time comes.

Example 6.2.3. Use an appropriate change of base formula to convert the following expressions
to ones with the indicated base. Verify your answers using a calculator, as appropriate.

1. 32 to base 10 2. 2% to base e
3. log,(5) to base e 4. In(x) to base 10
Solution.

1. We apply the Change of Base formula with a = 3 and b = 10 to obtain 32 = 1021°83), Typing
the latter in the calculator produces an answer of 9 as required.

2. Here, a = 2 and b = e so we have 2% = ¢*™(2) To verify this on our calculator, we can graph

f(z) = 2% and g(x) = e*!"(®). Their graphs are indistinguishable which provides evidence
that they are the same function.

180219032
|

._—r_'

y=f(z) =2" and y = g(z) = e

4The authors feel so strongly about showing students that every property of logarithms comes from and corresponds
to a property of exponents that we have broken tradition with the vast majority of other authors in this field. This
isn’t the first time this happened, and it certainly won’t be the last.
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3. Applying the change of base with a = 4 and b = e leads us to write log,(5) = EEZ% Evaluating
this in the calculator gives % ~ 1.16. How do we check this really is the value of log,(5)?

By definition, log,(5) is the exponent we put on 4 to get 5. The calculator confirms this.’

4. We write In(z) = log,(z) = igi((i)) We graph both f(z) = In(z) and g(z) = llgig)) and find
both graphs appear to be identical.

i 2
1. 166894847
4 5 L

SWhich means if it is lying to us about the first answer it gave us, at least it is being consistent.
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6.2.1 EXERCISES
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In Exercises 1 - 15, expand the given logarithm and simplify. Assume when necessary that all
quantities represent positive real numbers.

1. In(23y?)
4. log(1.23 x 1037)
7. log. 5 (4953)

22

100
13. log( \3/%/@)

128 Z\3
2. 10g2 <M) 3. 10g5 (275>

5 (¥2)

8. log%(Q:E(y3 —8))

11. ln(4 my)
ez

Y2
14. log: (4 ;)
2 z

6. logs (z* — 25)
9. log (1000$3y5)

216\ *

()

In Exercises 16 - 29, use the properties of logarithms to write the expression as a single logarithm.

16. 41n(z) + 21n(y)
18. logs(z) — 2logs(y)

20. 21In(z) — 31In(y) — 41n(2)
22. —iIn(z) — $In(y) + 3 In(2)
24. 3 — log()

26. In(x) +

D=

28. logy(x) + logy(x — 1)

17. logy(x) + logy(y) — logy(2)
19. logy() — 2oy () — logy (2)
21. log(z) — +log(z) + 1 log(y)
23. logs(x) — 3

25. log;(x) + logy(z — 3) — 2

27. logy(x) + logy(x)

29. logy(z) +logi(z — 1)
2
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In Exercises 30 - 33, use the appropriate change of base formula to convert the given expression to
an expression with the indicated base.

30.

32.

71 to base e 31. logs(z + 2) to base 10

2 x
<3) to base e 33. log(z? + 1) to base e

In Exercises 34 - 39, use the appropriate change of base formula to approximate the logarithm.

34.

37.

40.
41.
42.

43.

44.

45.

logs(12) 35. logs(80) 36. loge(72)
1

log, <10> 38. logs (1000) 39. log2 (50)

Compare and contrast the graphs of y = In(2?) and y = 2In(z).

Prove the Quotient Rule and Power Rule for Logarithms.

Give numerical examples to show that, in general,

(a) log,(z +y) # logy(w) + logy(y)
(b) logy(z —y) # logy(w) — log,(y)

z\ _, logy(z)
(€) log <y> # logy(y)

The Henderson-Hasselbalch Equation: Suppose H A represents a weak acid. Then we have a
reversible chemical reaction

HA=H"+ A",
The acid disassociation constant, K, is given by
AT (4]
“ [HA] [HA]
where the square brackets denote the concentrations just as they did in Exercise 77 in Section
6.1. The symbol pK, is defined similarly to pH in that pK, = — log(K,). Using the definition

of pH from Exercise 77 and the properties of logarithms, derive the Henderson-Hasselbalch
Equation which states
[A7]

pH =pK, + log (A

Research the history of logarithms including the origin of the word ‘logarithm’ itself. Why is
the abbreviation of natural log ‘In’ and not ‘nl’?

There is a scene in the movie ‘Apollo 13’ in which several people at Mission Control use slide
rules to verify a computation. Was that scene accurate? Look for other pop culture references
to logarithms and slide rules.
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6.2.2 ANSWERS
1. 3In(z) + 21n(y)
3. 3logs(z) — 6
5. 5 In(z) — In(z) — In(y)
7. 3log, s5(x) + 4
9. 34 3log(z) + 5log(y)
11. jIn(z) + 3In(y) — 3 — ;1n(2)
13. 3 +log(z) + 3 log(y)

15.

Wi
—
B

—
8

N~—

|
—_
)

—
—_
(a=)

~—

|

N[
—_
B

—~

<

~—
|

N[
—_
B

—
I
~—

17. log, (2 18. logs (%)

) ;
20. In (g—i)

21. log (%j)
23. logs (%)

24. log (1000)

T

S

¥

26. In (z+\/e) 27. log, (x3/2)

29. log, (%)

32. (2)" = eo(3)

34. logs(12) ~ 2.26186
36. logg(72) ~ 2.38685

38. logs (1000) ~ —13.52273

10.
12.

14.

16.

30. 7*—1 = e(x—l)ln(?)

37.
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. T —logy (22 + 4)
. log(1.23) 4+ 37
. logs(x — 5) + logs(z + 5)

- —2+logy (x)+ log1 (y—2)+ log1 (y? +2y +4)

2logg(z) — 4 — 4logs(y)

12 — 12]ogg(x) — 4logg(y)
~2+ 3 log (o) —logy ) —  logy (2)
In(a'y?)

19. logs (y%)

29. 1n(3 =

31. logy(x + 2) = B2

In(z2+1
33. log(z? +1) = 151(1?;))

35. logs(80) ~ 2.72271

log, (15) ~ —1.66096

39. log%(50) ~ —9.64824



