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2.4 Inequalities with Absolute Value and Quadratic Functions

In this section, not only do we develop techniques for solving various classes of inequalities analyt-
ically, we also look at them graphically. The first example motivates the core ideas.

Example 2.4.1. Let f(x) = 2x− 1 and g(x) = 5.

1. Solve f(x) = g(x).

2. Solve f(x) < g(x).

3. Solve f(x) > g(x).

4. Graph y = f(x) and y = g(x) on the same set of axes and interpret your solutions to parts 1
through 3 above.

Solution.

1. To solve f(x) = g(x), we replace f(x) with 2x− 1 and g(x) with 5 to get 2x− 1 = 5. Solving
for x, we get x = 3.

2. The inequality f(x) < g(x) is equivalent to 2x− 1 < 5. Solving gives x < 3 or (−∞, 3).

3. To find where f(x) > g(x), we solve 2x− 1 > 5. We get x > 3, or (3,∞).

4. To graph y = f(x), we graph y = 2x − 1, which is a line with a y-intercept of (0,−1) and a
slope of 2. The graph of y = g(x) is y = 5 which is a horizontal line through (0, 5).
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To see the connection between the graph and the Algebra, we recall the Fundamental Graph-
ing Principle for Functions in Section 1.6: the point (a, b) is on the graph of f if and only if
f(a) = b. In other words, a generic point on the graph of y = f(x) is (x, f(x)), and a generic
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point on the graph of y = g(x) is (x, g(x)). When we seek solutions to f(x) = g(x), we are
looking for x values whose y values on the graphs of f and g are the same. In part 1, we
found x = 3 is the solution to f(x) = g(x). Sure enough, f(3) = 5 and g(3) = 5 so that the
point (3, 5) is on both graphs. In other words, the graphs of f and g intersect at (3, 5). In
part 2, we set f(x) < g(x) and solved to find x < 3. For x < 3, the point (x, f(x)) is below
(x, g(x)) since the y values on the graph of f are less than the y values on the graph of g
there. Analogously, in part 3, we solved f(x) > g(x) and found x > 3. For x > 3, note that
the graph of f is above the graph of g, since the y values on the graph of f are greater than
the y values on the graph of g for those values of x.
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f(x) < g(x) on (−∞, 3)
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f(x) > g(x) on (3,∞)

The preceding example demonstrates the following, which is a consequence of the Fundamental
Graphing Principle for Functions.

Graphical Interpretation of Equations and Inequalities

Suppose f and g are functions.

• The solutions to f(x) = g(x) are the x values where the graphs of y = f(x) and y = g(x)
intersect.

• The solution to f(x) < g(x) is the set of x values where the graph of y = f(x) is below the
graph of y = g(x).

• The solution to f(x) > g(x) is the set of x values where the graph of y = f(x) above the
graph of y = g(x).

The next example turns the tables and furnishes the graphs of two functions and asks for solutions
to equations and inequalities.
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Example 2.4.2. The graphs of f and g are below. (The graph of y = g(x) is bolded.) Use these
graphs to answer the following questions.
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1. Solve f(x) = g(x). 2. Solve f(x) < g(x). 3. Solve f(x) ≥ g(x).

Solution.

1. To solve f(x) = g(x), we look for where the graphs of f and g intersect. These appear to be
at the points (−1, 2) and (1, 2), so our solutions to f(x) = g(x) are x = −1 and x = 1.

2. To solve f(x) < g(x), we look for where the graph of f is below the graph of g. This appears
to happen for the x values less than −1 and greater than 1. Our solution is (−∞,−1)∪(1,∞).

3. To solve f(x) ≥ g(x), we look for solutions to f(x) = g(x) as well as f(x) > g(x). We solved
the former equation and found x = ±1. To solve f(x) > g(x), we look for where the graph
of f is above the graph of g. This appears to happen between x = −1 and x = 1, on the
interval (−1, 1). Hence, our solution to f(x) ≥ g(x) is [−1, 1].
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f(x) < g(x)
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f(x) ≥ g(x)
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We now turn our attention to solving inequalities involving the absolute value. We have the
following theorem from Intermediate Algebra to help us.

Theorem 2.4. Inequalities Involving the Absolute Value: Let c be a real number.

• For c > 0, |x| < c is equivalent to −c < x < c.

• For c > 0, |x| ≤ c is equivalent to −c ≤ x ≤ c.

• For c ≤ 0, |x| < c has no solution, and for c < 0, |x| ≤ c has no solution.

• For c ≥ 0, |x| > c is equivalent to x < −c or x > c.

• For c ≥ 0, |x| ≥ c is equivalent to x ≤ −c or x ≥ c.

• For c < 0, |x| > c and |x| ≥ c are true for all real numbers.

As with Theorem 2.1 in Section 2.2, we could argue Theorem 2.4 using cases. However, in light
of what we have developed in this section, we can understand these statements graphically. For
instance, if c > 0, the graph of y = c is a horizontal line which lies above the x-axis through (0, c).
To solve |x| < c, we are looking for the x values where the graph of y = |x| is below the graph of
y = c. We know that the graphs intersect when |x| = c, which, from Section 2.2, we know happens
when x = c or x = −c. Graphing, we get

(c, c)(−c, c)

x

y

−c c

We see that the graph of y = |x| is below y = c for x between −c and c, and hence we get |x| < c
is equivalent to −c < x < c. The other properties in Theorem 2.4 can be shown similarly.

Example 2.4.3. Solve the following inequalities analytically; check your answers graphically.

1. |x− 1| ≥ 3 2. 4− 3|2x+ 1| > −2

3. 2 < |x− 1| ≤ 5 4. |x+ 1| ≥ x+ 4
2

Solution.

1. From Theorem 2.4, |x − 1| ≥ 3 is equivalent to x − 1 ≤ −3 or x − 1 ≥ 3. Solving, we get
x ≤ −2 or x ≥ 4, which, in interval notation is (−∞,−2] ∪ [4,∞). Graphically, we have
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We see that the graph of y = |x− 1| is above the horizontal line y = 3 for x < −2 and x > 4
hence this is where |x− 1| > 3. The two graphs intersect when x = −2 and x = 4, so we have
graphical confirmation of our analytic solution.

2. To solve 4 − 3|2x + 1| > −2 analytically, we first isolate the absolute value before applying
Theorem 2.4. To that end, we get −3|2x+ 1| > −6 or |2x+ 1| < 2. Rewriting, we now have
−2 < 2x+ 1 < 2 so that −3

2 < x < 1
2 . In interval notation, we write

(
−3

2 ,
1
2

)
. Graphically we

see that the graph of y = 4− 3|2x+ 1| is above y = −2 for x values between −3
2 and 1

2 .

y = 4− 3|2x+ 1|
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3. Rewriting the compound inequality 2 < |x− 1| ≤ 5 as ‘2 < |x− 1| and |x− 1| ≤ 5’ allows us
to solve each piece using Theorem 2.4. The first inequality, 2 < |x − 1| can be re-written as
|x − 1| > 2 so x − 1 < −2 or x − 1 > 2. We get x < −1 or x > 3. Our solution to the first
inequality is then (−∞,−1) ∪ (3,∞). For |x − 1| ≤ 5, we combine results in Theorems 2.1
and 2.4 to get −5 ≤ x− 1 ≤ 5 so that −4 ≤ x ≤ 6, or [−4, 6]. Our solution to 2 < |x− 1| ≤ 5
is comprised of values of x which satisfy both parts of the inequality, so we take intersection1

of (−∞,−1) ∪ (3,∞) and [−4, 6] to get [−4,−1) ∪ (3, 6]. Graphically, we see that the graph
of y = |x− 1| is ‘between’ the horizontal lines y = 2 and y = 5 for x values between −4 and
−1 as well as those between 3 and 6. Including the x values where y = |x − 1| and y = 5
intersect, we get

1See Definition 1.2 in Section 1.1.1.
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4. We need to exercise some special caution when solving |x+ 1| ≥ x+4
2 . As we saw in Example

2.2.1 in Section 2.2, when variables are both inside and outside of the absolute value, it’s
usually best to refer to the definition of absolute value, Definition 2.4, to remove the absolute
values and proceed from there. To that end, we have |x + 1| = −(x + 1) if x < −1 and
|x + 1| = x + 1 if x ≥ −1. We break the inequality into cases, the first case being when
x < −1. For these values of x, our inequality becomes −(x + 1) ≥ x+4

2 . Solving, we get
−2x − 2 ≥ x + 4, so that −3x ≥ 6, which means x ≤ −2. Since all of these solutions fall
into the category x < −1, we keep them all. For the second case, we assume x ≥ −1. Our
inequality becomes x+ 1 ≥ x+4

2 , which gives 2x+ 2 ≥ x+ 4 or x ≥ 2. Since all of these values
of x are greater than or equal to −1, we accept all of these solutions as well. Our final answer
is (−∞,−2] ∪ [2,∞).

x

y

y = |x+ 1| y = x+4
2

−4 −3 −2 −1 1 2 3 4

2

3

4

We now turn our attention to quadratic inequalities. In the last example of Section 2.3, we needed
to determine the solution to x2 − x − 6 < 0. We will now re-visit this problem using some of the
techniques developed in this section not only to reinforce our solution in Section 2.3, but to also
help formulate a general analytic procedure for solving all quadratic inequalities. If we consider
f(x) = x2 − x − 6 and g(x) = 0, then solving x2 − x − 6 < 0 corresponds graphically to finding
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the values of x for which the graph of y = f(x) = x2 − x− 6 (the parabola) is below the graph of
y = g(x) = 0 (the x-axis). We’ve provided the graph again for reference.
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y = x2 − x− 6

We can see that the graph of f does dip below the x-axis between its two x-intercepts. The zeros
of f are x = −2 and x = 3 in this case and they divide the domain (the x-axis) into three intervals:
(−∞,−2), (−2, 3) and (3,∞). For every number in (−∞,−2), the graph of f is above the x-axis;
in other words, f(x) > 0 for all x in (−∞,−2). Similarly, f(x) < 0 for all x in (−2, 3), and f(x) > 0
for all x in (3,∞). We can schematically represent this with the sign diagram below.

−2 3

(+) 0 (−) 0 (+)

Here, the (+) above a portion of the number line indicates f(x) > 0 for those values of x; the (−)
indicates f(x) < 0 there. The numbers labeled on the number line are the zeros of f , so we place
0 above them. We see at once that the solution to f(x) < 0 is (−2, 3).

Our next goal is to establish a procedure by which we can generate the sign diagram without
graphing the function. An important property2 of quadratic functions is that if the function is
positive at one point and negative at another, the function must have at least one zero in between.
Graphically, this means that a parabola can’t be above the x-axis at one point and below the x-axis
at another point without crossing the x-axis. This allows us to determine the sign of all of the
function values on a given interval by testing the function at just one value in the interval. This
gives us the following.

2We will give this property a name in Chapter 3 and revisit this concept then.
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Steps for Solving a Quadratic Inequality

1. Rewrite the inequality, if necessary, as a quadratic function f(x) on one side of the in-
equality and 0 on the other.

2. Find the zeros of f and place them on the number line with the number 0 above them.

3. Choose a real number, called a test value, in each of the intervals determined in step 2.

4. Determine the sign of f(x) for each test value in step 3, and write that sign above the
corresponding interval.

5. Choose the intervals which correspond to the correct sign to solve the inequality.

Example 2.4.4. Solve the following inequalities analytically using sign diagrams. Verify your
answer graphically.

1. 2x2 ≤ 3− x 2. x2 − 2x > 1

3. x2 + 1 ≤ 2x 4. 2x− x2 ≥ |x− 1| − 1

Solution.

1. To solve 2x2 ≤ 3−x, we first get 0 on one side of the inequality which yields 2x2 +x− 3 ≤ 0.
We find the zeros of f(x) = 2x2 + x − 3 by solving 2x2 + x − 3 = 0 for x. Factoring gives
(2x + 3)(x − 1) = 0, so x = −3

2 or x = 1. We place these values on the number line with 0
above them and choose test values in the intervals

(
−∞,−3

2

)
,
(
−3

2 , 1
)

and (1,∞). For the
interval

(
−∞,−3

2

)
, we choose3 x = −2; for

(
−3

2 , 1
)
, we pick x = 0; and for (1,∞), x = 2.

Evaluating the function at the three test values gives us f(−2) = 3 > 0, so we place (+)
above

(
−∞,−3

2

)
; f(0) = −3 < 0, so (−) goes above the interval

(
−3

2 , 1
)
; and, f(2) = 7,

which means (+) is placed above (1,∞). Since we are solving 2x2 + x − 3 ≤ 0, we look for
solutions to 2x2 + x− 3 < 0 as well as solutions for 2x2 + x− 3 = 0. For 2x2 + x− 3 < 0, we
need the intervals which we have a (−). Checking the sign diagram, we see this is

(
−3

2 , 1
)
.

We know 2x2 + x− 3 = 0 when x = −3
2 and x = 1, so our final answer is

[
−3

2 , 1
]
.

To verify our solution graphically, we refer to the original inequality, 2x2 ≤ 3 − x. We let
g(x) = 2x2 and h(x) = 3− x. We are looking for the x values where the graph of g is below
that of h (the solution to g(x) < h(x)) as well as the points of intersection (the solutions to
g(x) = h(x)). The graphs of g and h are given on the right with the sign chart on the left.

3We have to choose something in each interval. If you don’t like our choices, please feel free to choose different
numbers. You’ll get the same sign chart.
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2. Once again, we re-write x2 − 2x > 1 as x2 − 2x− 1 > 0 and we identify f(x) = x2 − 2x− 1.
When we go to find the zeros of f , we find, to our chagrin, that the quadratic x2 − 2x − 1
doesn’t factor nicely. Hence, we resort to the quadratic formula to solve x2− 2x− 1 = 0, and
arrive at x = 1 ±

√
2. As before, these zeros divide the number line into three pieces. To

help us decide on test values, we approximate 1−
√

2 ≈ −0.4 and 1 +
√

2 ≈ 2.4. We choose
x = −1, x = 0 and x = 3 as our test values and find f(−1) = 2, which is (+); f(0) = −1
which is (−); and f(3) = 2 which is (+) again. Our solution to x2 − 2x − 1 > 0 is where
we have (+), so, in interval notation

(
−∞, 1−

√
2
)
∪
(
1 +
√

2,∞
)
. To check the inequality

x2− 2x > 1 graphically, we set g(x) = x2− 2x and h(x) = 1. We are looking for the x values
where the graph of g is above the graph of h. As before we present the graphs on the right
and the sign chart on the left.
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2 1 +
√

2

(+) 0 (−) 0 (+)
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3. To solve x2 + 1 ≤ 2x, as before, we solve x2 − 2x + 1 ≤ 0. Setting f(x) = x2 − 2x + 1 = 0,
we find the only one zero of f , x = 1. This one x value divides the number line into two
intervals, from which we choose x = 0 and x = 2 as test values. We find f(0) = 1 > 0 and
f(2) = 1 > 0. Since we are looking for solutions to x2 − 2x + 1 ≤ 0, we are looking for x
values where x2 − 2x+ 1 < 0 as well as where x2 − 2x+ 1 = 0. Looking at our sign diagram,
there are no places where x2 − 2x + 1 < 0 (there are no (−)), so our solution is only x = 1
(where x2− 2x+ 1 = 0). We write this as {1}. Graphically, we solve x2 + 1 ≤ 2x by graphing
g(x) = x2 + 1 and h(x) = 2x. We are looking for the x values where the graph of g is below
the graph of h (for x2 +1 < 2x) and where the two graphs intersect (x2 +1 = 2x). Notice that
the line and the parabola touch at (1, 2), but the parabola is always above the line otherwise.4

4In this case, we say the line y = 2x is tangent to y = x2 +1 at (1, 2). Finding tangent lines to arbitrary functions
is a fundamental problem solved, in general, with Calculus.
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4. To solve our last inequality, 2x− x2 ≥ |x− 1| − 1, we re-write the absolute value using cases.
For x < 1, |x− 1| = −(x− 1) = 1− x, so we get 2x− x2 ≥ 1− x− 1, or x2− 3x ≤ 0. Finding
the zeros of f(x) = x2 − 3x, we get x = 0 and x = 3. However, we are only concerned with
the portion of the number line where x < 1, so the only zero that we concern ourselves with
is x = 0. This divides the interval x < 1 into two intervals: (−∞, 0) and (0, 1). We choose
x = −1 and x = 1

2 as our test values. We find f(−1) = 4 and f
(

1
2

)
= −5

4 . Hence, our
solution to x2 − 3x ≤ 0 for x < 1 is [0, 1). Next, we turn our attention to the case x ≥ 1.
Here, |x−1| = x−1, so our original inequality becomes 2x−x2 ≥ x−1−1, or x2−x−2 ≤ 0.
Setting g(x) = x2−x−2, we find the zeros of g to be x = −1 and x = 2. Of these, only x = 2
lies in the region x ≥ 1, so we ignore x = −1. Our test intervals are now [1, 2) and (2,∞).
We choose x = 1 and x = 3 as our test values and find g(1) = −2 and g(3) = 4. Hence, our
solution to g(x) = x2 − x− 2 ≤ 0, in this region is [1, 2).

0

(+) 0 (−)

−1 1
2

1 2

(−) 0 (+)

31

Combining these into one sign diagram, we have that our solution is [0, 2]. Graphically, to
check 2x − x2 ≥ |x − 1| − 1, we set h(x) = 2x − x2 and i(x) = |x − 1| − 1 and look for the
x values where the graph of h is above the the graph of i (the solution of h(x) > i(x)) as
well as the x-coordinates of the intersection points of both graphs (where h(x) = i(x)). The
combined sign chart is given on the left and the graphs are on the right.

0 2

(+) 0 (−) 0 (+)

−1 0 3 x

y

y = 2x− x2

y = |x− 1| − 1

−1 1 2 3

1
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One of the classic applications of inequalities is the notion of tolerances.5 Recall that for real
numbers x and c, the quantity |x − c| may be interpreted as the distance from x to c. Solving
inequalities of the form |x− c| ≤ d for d ≥ 0 can then be interpreted as finding all numbers x which
lie within d units of c. We can think of the number d as a ‘tolerance’ and our solutions x as being
within an accepted tolerance of c. We use this principle in the next example.

Example 2.4.5. The area A (in square inches) of a square piece of particle board which measures
x inches on each side is A(x) = x2. Suppose a manufacturer needs to produce a 24 inch by 24 inch
square piece of particle board as part of a home office desk kit. How close does the side of the piece
of particle board need to be cut to 24 inches to guarantee that the area of the piece is within a
tolerance of 0.25 square inches of the target area of 576 square inches?

Solution. Mathematically, we express the desire for the area A(x) to be within 0.25 square inches
of 576 as |A − 576| ≤ 0.25. Since A(x) = x2, we get |x2 − 576| ≤ 0.25, which is equivalent
to −0.25 ≤ x2 − 576 ≤ 0.25. One way to proceed at this point is to solve the two inequalities
−0.25 ≤ x2 − 576 and x2 − 576 ≤ 0.25 individually using sign diagrams and then taking the
intersection of the solution sets. While this way will (eventually) lead to the correct answer, we
take this opportunity to showcase the increasing property of the square root: if 0 ≤ a ≤ b, then√
a ≤
√
b. To use this property, we proceed as follows

−0.25 ≤ x2 − 576 ≤ 0.25
575.75 ≤ x2 ≤ 576.25 (add 576 across the inequalities.)√
575.75 ≤

√
x2 ≤

√
576.25 (take square roots.)√

575.75 ≤ |x| ≤
√

576.25 (
√
x2 = |x|)

By Theorem 2.4, we find the solution to
√

575.75 ≤ |x| to be
(
−∞,−

√
575.75

]
∪
[√

575.75,∞
)

and
the solution to |x| ≤

√
576.25 to be

[
−
√

576.25,
√

576.25
]
. To solve

√
575.75 ≤ |x| ≤

√
576.25, we

intersect these two sets to get [−
√

576.25,−
√

575.75] ∪ [
√

575.75,
√

576.25]. Since x represents a
length, we discard the negative answers and get [

√
575.75,

√
576.25]. This means that the side of

the piece of particle board must be cut between
√

575.75 ≈ 23.995 and
√

576.25 ≈ 24.005 inches, a
tolerance of (approximately) 0.005 inches of the target length of 24 inches.

Our last example in the section demonstrates how inequalities can be used to describe regions in
the plane, as we saw earlier in Section 1.2.

Example 2.4.6. Sketch the following relations.

1. R = {(x, y) : y > |x|}

2. S = {(x, y) : y ≤ 2− x2}

3. T = {(x, y) : |x| < y ≤ 2− x2}

5The underlying concept of Calculus can be phrased in terms of tolerances, so this is well worth your attention.
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Solution.

1. The relation R consists of all points (x, y) whose y-coordinate is greater than |x|. If we graph
y = |x|, then we want all of the points in the plane above the points on the graph. Dotting
the graph of y = |x| as we have done before to indicate that the points on the graph itself are
not in the relation, we get the shaded region below on the left.

2. For a point to be in S, its y-coordinate must be less than or equal to the y-coordinate on the
parabola y = 2− x2. This is the set of all points below or on the parabola y = 2− x2.

x

y

−2 −1 1 2
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2

The graph of R

x
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−2 −1 1 2

−1

1

2

The graph of S

3. Finally, the relation T takes the points whose y-coordinates satisfy both the conditions given
in R and those of S. Thus we shade the region between y = |x| and y = 2−x2, keeping those
points on the parabola, but not the points on y = |x|. To get an accurate graph, we need to
find where these two graphs intersect, so we set |x| = 2− x2. Proceeding as before, breaking
this equation into cases, we get x = −1, 1. Graphing yields

x

y
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−1

1

2

The graph of T
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2.4.1 Exercises

In Exercises 1 - 32, solve the inequality. Write your answer using interval notation.

1. |3x− 5| ≤ 4 2. |7x+ 2| > 10

3. |2x+ 1| − 5 < 0 4. |2− x| − 4 ≥ −3

5. |3x+ 5|+ 2 < 1 6. 2|7− x|+ 4 > 1

7. 2 ≤ |4− x| < 7 8. 1 < |2x− 9| ≤ 3

9. |x+ 3| ≥ |6x+ 9| 10. |x− 3| − |2x+ 1| < 0

11. |1− 2x| ≥ x+ 5 12. x+ 5 < |x+ 5|

13. x ≥ |x+ 1| 14. |2x+ 1| ≤ 6− x

15. x+ |2x− 3| < 2 16. |3− x| ≥ x− 5

17. x2 + 2x− 3 ≥ 0 18. 16x2 + 8x+ 1 > 0

19. x2 + 9 < 6x 20. 9x2 + 16 ≥ 24x

21. x2 + 4 ≤ 4x 22. x2 + 1 < 0

23. 3x2 ≤ 11x+ 4 24. x > x2

25. 2x2 − 4x− 1 > 0 26. 5x+ 4 ≤ 3x2

27. 2 ≤ |x2 − 9| < 9 28. x2 ≤ |4x− 3|

29. x2 + x+ 1 ≥ 0 30. x2 ≥ |x|

31. x|x+ 5| ≥ −6 32. x|x− 3| < 2

33. The profit, in dollars, made by selling x bottles of 100% All-Natural Certified Free-Trade
Organic Sasquatch Tonic is given by P (x) = −x2 + 25x − 100, for 0 ≤ x ≤ 35. How many
bottles of tonic must be sold to make at least $50 in profit?

34. Suppose C(x) = x2 − 10x+ 27, x ≥ 0 represents the costs, in hundreds of dollars, to produce
x thousand pens. Find the number of pens which can be produced for no more than $1100.

35. The temperature T , in degrees Fahrenheit, t hours after 6 AM is given by T (t) = −1
2 t

2+8t+32,
for 0 ≤ t ≤ 12. When is it warmer than 42◦ Fahrenheit?
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36. The height h in feet of a model rocket above the ground t seconds after lift-off is given by
h(t) = −5t2 + 100t, for 0 ≤ t ≤ 20. When is the rocket at least 250 feet off the ground?
Round your answer to two decimal places.

37. If a slingshot is used to shoot a marble straight up into the air from 2 meters above the
ground with an initial velocity of 30 meters per second, for what values of time t will the
marble be over 35 meters above the ground? (Refer to Exercise 25 in Section 2.3 for assistance
if needed.) Round your answers to two decimal places.

38. What temperature values in degrees Celsius are equivalent to the temperature range 50◦F to
95◦F? (Refer to Exercise 35 in Section 2.1 for assistance if needed.)

In Exercises 39 - 42, write and solve an inequality involving absolute values for the given statement.

39. Find all real numbers x so that x is within 4 units of 2.

40. Find all real numbers x so that 3x is within 2 units of −1.

41. Find all real numbers x so that x2 is within 1 unit of 3.

42. Find all real numbers x so that x2 is at least 7 units away from 4.

43. The surface area S of a cube with edge length x is given by S(x) = 6x2 for x > 0. Suppose the
cubes your company manufactures are supposed to have a surface area of exactly 42 square
centimeters, but the machines you own are old and cannot always make a cube with the
precise surface area desired. Write an inequality using absolute value that says the surface
area of a given cube is no more than 3 square centimeters away (high or low) from the target
of 42 square centimeters. Solve the inequality and write your answer using interval notation.

44. Suppose f is a function, L is a real number and ε is a positive number. Discuss with your
classmates what the inequality |f(x)− L| < ε means algebraically and graphically.6

In Exercises 45 - 50, sketch the graph of the relation.

45. R = {(x, y) : y ≤ x− 1} 46. R =
{

(x, y) : y > x2 + 1
}

47. R = {(x, y) : −1 < y ≤ 2x+ 1} 48. R =
{

(x, y) : x2 ≤ y < x+ 2
}

49. R = {(x, y) : |x| − 4 < y < 2− x} 50. R =
{

(x, y) : x2 < y ≤ |4x− 3|
}

51. Prove the second, third and fourth parts of Theorem 2.4.

6Understanding this type of inequality is really important in Calculus.
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2.4.2 Answers

1.
[

1
3 , 3
]

2.
(
−∞,−12

7

)
∪
(

8
7 ,∞

)
3. (−3, 2) 4. (−∞, 1] ∪ [3,∞)

5. No solution 6. (−∞,∞)

7. (−3, 2] ∪ [6, 11) 8. [3, 4) ∪ (5, 6]

9.
[
−12

7 ,−
6
5

]
10. (−∞,−4) ∪

(
2
3 ,∞

)
11.

(
−∞,−4

3

]
∪ [6,∞) 12. (−∞,−5)

13. No Solution. 14.
[
−7, 5

3

]
15.

(
1, 5

3

)
16. (−∞,∞)

17. (−∞,−3] ∪ [1,∞) 18.
(
−∞,−1

4

)
∪
(
−1

4 ,∞
)

19. No solution 20. (−∞,∞)

21. {2} 22. No solution

23.
[
−1

3 , 4
]

24. (0, 1)

25.
(
−∞, 1−

√
6

2

)
∪
(

1 +
√

6
2 ,∞

)
26.

(
−∞, 5−

√
73

6

]
∪
[

5+
√

73
6 ,∞

)
27.

“
−3
√

2,−
√

11
i
∪
h
−
√

7, 0
”
∪
“

0,
√

7
i
∪
h√

11, 3
√

2
”

28.
[
−2−

√
7,−2 +

√
7
]
∪ [1, 3]

29. (−∞,∞) 30. (−∞,−1] ∪ {0} ∪ [1,∞)

31. [−6,−3] ∪ [−2,∞) 32. (−∞, 1) ∪
(

2, 3+
√

17
2

)
33. P (x) ≥ 50 on [10, 15]. This means anywhere between 10 and 15 bottles of tonic need to be

sold to earn at least $50 in profit.

34. C(x) ≤ 11 on [2, 8]. This means anywhere between 2000 and 8000 pens can be produced and
the cost will not exceed $1100.

35. T (t) > 42 on (8 − 2
√

11, 8 + 2
√

11) ≈ (1.37, 14.63), which corresponds to between 7:22 AM
(1.37 hours after 6 AM) to 8:38 PM (14.63 hours after 6 AM.) However, since the model is
valid only for t, 0 ≤ t ≤ 12, we restrict our answer and find it is warmer than 42◦ Fahrenheit
from 7:22 AM to 6 PM.
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36. h(t) ≥ 250 on [10− 5
√

2, 10 + 5
√

2] ≈ [2.93, 17.07]. This means the rocket is at least 250 feet
off the ground between 2.93 and 17.07 seconds after lift off.

37. s(t) = −4.9t2 + 30t+ 2. s(t) > 35 on (approximately) (1.44, 4.68). This means between 1.44
and 4.68 seconds after it is launched into the air, the marble is more than 35 feet off the
ground.

38. From our previous work C(F ) = 5
9(F − 32) so 50 ≤ F ≤ 95 becomes 10 ≤ C ≤ 35.

39. |x− 2| ≤ 4, [−2, 6]

40. |3x+ 1| ≤ 2,
[
−1, 1

3

]
41. |x2 − 3| ≤ 1, [−2,−

√
2 ] ∪ [

√
2, 2]

42. |x2 − 4| ≥ 7, (−∞,−
√

11 ] ∪ [
√

11,∞)

43. Solving |S(x) − 42| ≤ 3, and disregarding the negative solutions yields
[√

13
2 ,
√

15
2

]
≈

[2.550, 2.739]. The edge length must be within 2.550 and 2.739 centimeters.

45.

x

y

−2 −1 1 2 3

−3

−2

−1

1

2

3

46.

x

y

−2 −1 1 2

1

2

3

4

47.

x

y

−2 −1 1 2

1

2

3

4

5

48.

x

y

−1 1 2

1

2

3

4
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49.

x

y

−2 −1 1 2 3

−4

−3

−2

−1

1

2

3

4

50.

x

y

−4 −3 −2 −1 1 2 3

5

10

15

20


