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10.6 The Inverse Trigonometric Functions

As the title indicates, in this section we concern ourselves with finding inverses of the (circular)
trigonometric functions. Our immediate problem is that, owing to their periodic nature, none of
the six circular functions is one-to-one. To remedy this, we restrict the domains of the circular
functions in the same way we restricted the domain of the quadratic function in Example 5.2.3 in
Section 5.2 to obtain a one-to-one function. We first consider f(x) = cos(x). Choosing the interval
[0, π] allows us to keep the range as [−1, 1] as well as the properties of being smooth and continuous.

x

y

Restricting the domain of f(x) = cos(x) to [0, π].

Recall from Section 5.2 that the inverse of a function f is typically denoted f−1. For this reason,
some textbooks use the notation f−1(x) = cos−1(x) for the inverse of f(x) = cos(x). The obvious
pitfall here is our convention of writing (cos(x))2 as cos2(x), (cos(x))3 as cos3(x) and so on. It
is far too easy to confuse cos−1(x) with 1

cos(x) = sec(x) so we will not use this notation in our
text.1 Instead, we use the notation f−1(x) = arccos(x), read ‘arc-cosine of x’. To understand the
‘arc’ in ‘arccosine’, recall that an inverse function, by definition, reverses the process of the original
function. The function f(t) = cos(t) takes a real number input t, associates it with the angle
θ = t radians, and returns the value cos(θ). Digging deeper,2 we have that cos(θ) = cos(t) is the
x-coordinate of the terminal point on the Unit Circle of an oriented arc of length |t| whose initial
point is (1, 0). Hence, we may view the inputs to f(t) = cos(t) as oriented arcs and the outputs as
x-coordinates on the Unit Circle. The function f−1, then, would take x-coordinates on the Unit
Circle and return oriented arcs, hence the ‘arc’ in arccosine. Below are the graphs of f(x) = cos(x)
and f−1(x) = arccos(x), where we obtain the latter from the former by reflecting it across the line
y = x, in accordance with Theorem 5.3.
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1

f(x) = cos(x), 0 ≤ x ≤ π

reflect across y = x
−−−−−−−−−−−−→

switch x and y coordinates

x

y

π
2

π

−1 1

f−1(x) = arccos(x).

1But be aware that many books do! As always, be sure to check the context!
2See page 704 if you need a review of how we associate real numbers with angles in radian measure.
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We restrict g(x) = sin(x) in a similar manner, although the interval of choice is
[
−π

2 ,
π
2

]
.

x

y

Restricting the domain of f(x) = sin(x) to
[
−π

2 ,
π
2

]
.

It should be no surprise that we call g−1(x) = arcsin(x), which is read ‘arc-sine of x’.

x

y

−π
2

π
2

−1

1

g(x) = sin(x), −π
2
≤ x ≤ π

2
.

reflect across y = x
−−−−−−−−−−−−→

switch x and y coordinates

x

y

−π
2

π
2

−1 1

g−1(x) = arcsin(x).

We list some important facts about the arccosine and arcsine functions in the following theorem.

Theorem 10.26. Properties of the Arccosine and Arcsine Functions

• Properties of F (x) = arccos(x)

– Domain: [−1, 1]

– Range: [0, π]

– arccos(x) = t if and only if 0 ≤ t ≤ π and cos(t) = x

– cos(arccos(x)) = x provided −1 ≤ x ≤ 1

– arccos(cos(x)) = x provided 0 ≤ x ≤ π

• Properties of G(x) = arcsin(x)

– Domain: [−1, 1]

– Range:
[
−π

2 ,
π
2

]
– arcsin(x) = t if and only if −π

2 ≤ t ≤
π
2 and sin(t) = x

– sin(arcsin(x)) = x provided −1 ≤ x ≤ 1

– arcsin(sin(x)) = x provided −π
2 ≤ x ≤

π
2

– additionally, arcsine is odd
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Everything in Theorem 10.26 is a direct consequence of the facts that f(x) = cos(x) for 0 ≤ x ≤ π
and F (x) = arccos(x) are inverses of each other as are g(x) = sin(x) for −π

2 ≤ x ≤ π
2 and

G(x) = arcsin(x). It’s about time for an example.

Example 10.6.1.

1. Find the exact values of the following.

(a) arccos
(

1
2

)
(b) arcsin

(√
2

2

)
(c) arccos

(
−
√

2
2

)
(d) arcsin

(
−1

2

)
(e) arccos

(
cos
(
π
6

))
(f) arccos

(
cos
(

11π
6

))
(g) cos

(
arccos

(
−3

5

))
(h) sin

(
arccos

(
−3

5

))
2. Rewrite the following as algebraic expressions of x and state the domain on which the equiv-

alence is valid.

(a) tan (arccos (x)) (b) cos (2 arcsin(x))

Solution.

1. (a) To find arccos
(

1
2

)
, we need to find the real number t (or, equivalently, an angle measuring

t radians) which lies between 0 and π with cos(t) = 1
2 . We know t = π

3 meets these
criteria, so arccos

(
1
2

)
= π

3 .

(b) The value of arcsin
(√

2
2

)
is a real number t between −π

2 and π
2 with sin(t) =

√
2

2 . The

number we seek is t = π
4 . Hence, arcsin

(√
2

2

)
= π

4 .

(c) The number t = arccos
(
−
√

2
2

)
lies in the interval [0, π] with cos(t) = −

√
2

2 . Our answer

is arccos
(
−
√

2
2

)
= 3π

4 .

(d) To find arcsin
(
−1

2

)
, we seek the number t in the interval

[
−π

2 ,
π
2

]
with sin(t) = −1

2 . The
answer is t = −π

6 so that arcsin
(
−1

2

)
= −π

6 .

(e) Since 0 ≤ π
6 ≤ π, we could simply invoke Theorem 10.26 to get arccos

(
cos
(
π
6

))
= π

6 .
However, in order to make sure we understand why this is the case, we choose to work
the example through using the definition of arccosine. Working from the inside out,
arccos

(
cos
(
π
6

))
= arccos

(√
3

2

)
. Now, arccos

(√
3

2

)
is the real number t with 0 ≤ t ≤ π

and cos(t) =
√

3
2 . We find t = π

6 , so that arccos
(
cos
(
π
6

))
= π

6 .
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(f) Since 11π
6 does not fall between 0 and π, Theorem 10.26 does not apply. We are forced to

work through from the inside out starting with arccos
(
cos
(

11π
6

))
= arccos

(√
3

2

)
. From

the previous problem, we know arccos
(√

3
2

)
= π

6 . Hence, arccos
(
cos
(

11π
6

))
= π

6 .

(g) One way to simplify cos
(
arccos

(
−3

5

))
is to use Theorem 10.26 directly. Since −3

5 is
between −1 and 1, we have that cos

(
arccos

(
−3

5

))
= −3

5 and we are done. However, as
before, to really understand why this cancellation occurs, we let t = arccos

(
−3

5

)
. Then,

by definition, cos(t) = −3
5 . Hence, cos

(
arccos

(
−3

5

))
= cos(t) = −3

5 , and we are finished
in (nearly) the same amount of time.

(h) As in the previous example, we let t = arccos
(
−3

5

)
so that cos(t) = −3

5 for some t where
0 ≤ t ≤ π. Since cos(t) < 0, we can narrow this down a bit and conclude that π

2 < t < π,
so that t corresponds to an angle in Quadrant II. In terms of t, then, we need to find
sin
(
arccos

(
−3

5

))
= sin(t). Using the Pythagorean Identity cos2(t) + sin2(t) = 1, we get(

−3
5

)2 + sin2(t) = 1 or sin(t) = ±4
5 . Since t corresponds to a Quadrants II angle, we

choose sin(t) = 4
5 . Hence, sin

(
arccos

(
−3

5

))
= 4

5 .

2. (a) We begin this problem in the same manner we began the previous two problems. To
help us see the forest for the trees, we let t = arccos(x), so our goal is to find a way to
express tan (arccos (x)) = tan(t) in terms of x. Since t = arccos(x), we know cos(t) = x
where 0 ≤ t ≤ π, but since we are after an expression for tan(t), we know we need to
throw out t = π

2 from consideration. Hence, either 0 ≤ t < π
2 or π

2 < t ≤ π so that,
geometrically, t corresponds to an angle in Quadrant I or Quadrant II. One approach3

to finding tan(t) is to use the quotient identity tan(t) = sin(t)
cos(t) . Substituting cos(t) = x

into the Pythagorean Identity cos2(t) + sin2(t) = 1 gives x2 + sin2(t) = 1, from which we
get sin(t) = ±

√
1− x2. Since t corresponds to angles in Quadrants I and II, sin(t) ≥ 0,

so we choose sin(t) =
√

1− x2. Thus,

tan(t) =
sin(t)
cos(t)

=
√

1− x2

x

To determine the values of x for which this equivalence is valid, we consider our sub-
stitution t = arccos(x). Since the domain of arccos(x) is [−1, 1], we know we must
restrict −1 ≤ x ≤ 1. Additionally, since we had to discard t = π

2 , we need to discard
x = cos

(
π
2

)
= 0. Hence, tan (arccos (x)) =

√
1−x2

x is valid for x in [−1, 0) ∪ (0, 1].
(b) We proceed as in the previous problem by writing t = arcsin(x) so that t lies in the

interval
[
−π

2 ,
π
2

]
with sin(t) = x. We aim to express cos (2 arcsin(x)) = cos(2t) in terms

of x. Since cos(2t) is defined everywhere, we get no additional restrictions on t as we did
in the previous problem. We have three choices for rewriting cos(2t): cos2(t) − sin2(t),
2 cos2(t)−1 and 1−2 sin2(t). Since we know x = sin(t), it is easiest to use the last form:

cos (2 arcsin(x)) = cos(2t) = 1− 2 sin2(t) = 1− 2x2

3Alternatively, we could use the identity: 1 + tan2(t) = sec2(t). Since x = cos(t), sec(t) = 1
cos(t)

= 1
x

. The reader
is invited to work through this approach to see what, if any, difficulties arise.
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To find the restrictions on x, we once again appeal to our substitution t = arcsin(x).
Since arcsin(x) is defined only for −1 ≤ x ≤ 1, the equivalence cos (2 arcsin(x)) = 1−2x2

is valid only on [−1, 1].

A few remarks about Example 10.6.1 are in order. Most of the common errors encountered in
dealing with the inverse circular functions come from the need to restrict the domains of the
original functions so that they are one-to-one. One instance of this phenomenon is the fact that
arccos

(
cos
(

11π
6

))
= π

6 as opposed to 11π
6 . This is the exact same phenomenon discussed in Section

5.2 when we saw
√

(−2)2 = 2 as opposed to −2. Additionally, even though the expression we
arrived at in part 2b above, namely 1 − 2x2, is defined for all real numbers, the equivalence
cos (2 arcsin(x)) = 1 − 2x2 is valid for only −1 ≤ x ≤ 1. This is akin to the fact that while the
expression x is defined for all real numbers, the equivalence (

√
x)2 = x is valid only for x ≥ 0. For

this reason, it pays to be careful when we determine the intervals where such equivalences are valid.

The next pair of functions we wish to discuss are the inverses of tangent and cotangent, which
are named arctangent and arccotangent, respectively. First, we restrict f(x) = tan(x) to its
fundamental cycle on

(
−π

2 ,
π
2

)
to obtain f−1(x) = arctan(x). Among other things, note that the

vertical asymptotes x = −π
2 and x = π

2 of the graph of f(x) = tan(x) become the horizontal
asymptotes y = −π

2 and y = π
2 of the graph of f−1(x) = arctan(x).

x

y

−π
4

−π
2

π
4

π
2

−1

1

f(x) = tan(x), −π
2
< x < π

2
.

reflect across y = x
−−−−−−−−−−−−→

switch x and y coordinates

x

y

−π
4

−π
2

π
4

π
2

−1 1

f−1(x) = arctan(x).

Next, we restrict g(x) = cot(x) to its fundamental cycle on (0, π) to obtain g−1(x) = arccot(x).
Once again, the vertical asymptotes x = 0 and x = π of the graph of g(x) = cot(x) become the
horizontal asymptotes y = 0 and y = π of the graph of g−1(x) = arccot(x). We show these graphs
on the next page and list some of the basic properties of the arctangent and arccotangent functions.
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x

y

π
4

π
2

3π
4

π

−1

1

g(x) = cot(x), 0 < x < π.

reflect across y = x
−−−−−−−−−−−−→

switch x and y coordinates

x

y

π
4

π
2

3π
4

π

−1 1

g−1(x) = arccot(x).

Theorem 10.27. Properties of the Arctangent and Arccotangent Functions

• Properties of F (x) = arctan(x)

– Domain: (−∞,∞)

– Range:
(
−π

2 ,
π
2

)
– as x→ −∞, arctan(x)→ −π

2
+; as x→∞, arctan(x)→ π

2
−

– arctan(x) = t if and only if −π
2 < t < π

2 and tan(t) = x

– arctan(x) = arccot
(

1
x

)
for x > 0

– tan (arctan(x)) = x for all real numbers x

– arctan(tan(x)) = x provided −π
2 < x < π

2

– additionally, arctangent is odd

• Properties of G(x) = arccot(x)

– Domain: (−∞,∞)

– Range: (0, π)

– as x→ −∞, arccot(x)→ π−; as x→∞, arccot(x)→ 0+

– arccot(x) = t if and only if 0 < t < π and cot(t) = x

– arccot(x) = arctan
(

1
x

)
for x > 0

– cot (arccot(x)) = x for all real numbers x

– arccot(cot(x)) = x provided 0 < x < π
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Example 10.6.2.

1. Find the exact values of the following.

(a) arctan(
√

3) (b) arccot(−
√

3)

(c) cot(arccot(−5)) (d) sin
(
arctan

(
−3

4

))
2. Rewrite the following as algebraic expressions of x and state the domain on which the equiv-

alence is valid.

(a) tan(2 arctan(x)) (b) cos(arccot(2x))

Solution.

1. (a) We know arctan(
√

3) is the real number t between −π
2 and π

2 with tan(t) =
√

3. We find
t = π

3 , so arctan(
√

3) = π
3 .

(b) The real number t = arccot(−
√

3) lies in the interval (0, π) with cot(t) = −
√

3. We get
arccot(−

√
3) = 5π

6 .
(c) We can apply Theorem 10.27 directly and obtain cot(arccot(−5)) = −5. However,

working it through provides us with yet another opportunity to understand why this
is the case. Letting t = arccot(−5), we have that t belongs to the interval (0, π) and
cot(t) = −5. Hence, cot(arccot(−5)) = cot(t) = −5.

(d) We start simplifying sin
(
arctan

(
−3

4

))
by letting t = arctan

(
−3

4

)
. Then tan(t) = −3

4 for
some −π

2 < t < π
2 . Since tan(t) < 0, we know, in fact, −π

2 < t < 0. One way to proceed
is to use The Pythagorean Identity, 1+cot2(t) = csc2(t), since this relates the reciprocals
of tan(t) and sin(t) and is valid for all t under consideration.4 From tan(t) = −3

4 , we
get cot(t) = −4

3 . Substituting, we get 1 +
(
−4

3

)2 = csc2(t) so that csc(t) = ±5
3 . Since

−π
2 < t < 0, we choose csc(t) = −5

3 , so sin(t) = −3
5 . Hence, sin

(
arctan

(
−3

4

))
= −3

5 .

2. (a) If we let t = arctan(x), then −π
2 < t < π

2 and tan(t) = x. We look for a way to express
tan(2 arctan(x)) = tan(2t) in terms of x. Before we get started using identities, we note
that tan(2t) is undefined when 2t = π

2 + πk for integers k. Dividing both sides of this
equation by 2 tells us we need to exclude values of t where t = π

4 + π
2k, where k is

an integer. The only members of this family which lie in
(
−π

2 ,
π
2

)
are t = ±π

4 , which
means the values of t under consideration are

(
−π

2 ,−
π
4

)
∪
(
−π

4 ,
π
4

)
∪
(
π
4 ,

π
2

)
. Returning

to arctan(2t), we note the double angle identity tan(2t) = 2 tan(t)
1−tan2(t)

, is valid for all the
values of t under consideration, hence we get

tan(2 arctan(x)) = tan(2t) =
2 tan(t)

1− tan2(t)
=

2x
1− x2

4It’s always a good idea to make sure the identities used in these situations are valid for all values t under
consideration. Check our work back in Example 10.6.1. Were the identities we used there valid for all t under
consideration? A pedantic point, to be sure, but what else do you expect from this book?
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To find where this equivalence is valid we check back with our substitution t = arctan(x).
Since the domain of arctan(x) is all real numbers, the only exclusions come from the
values of t we discarded earlier, t = ±π

4 . Since x = tan(t), this means we exclude
x = tan

(
±π

4

)
= ±1. Hence, the equivalence tan(2 arctan(x)) = 2x

1−x2 holds for all x in
(−∞,−1) ∪ (−1, 1) ∪ (1,∞).

(b) To get started, we let t = arccot(2x) so that cot(t) = 2x where 0 < t < π. In terms
of t, cos(arccot(2x)) = cos(t), and our goal is to express the latter in terms of x. Since
cos(t) is always defined, there are no additional restrictions on t, so we can begin using
identities to relate cot(t) to cos(t). The identity cot(t) = cos(t)

sin(t) is valid for t in (0, π),
so our strategy is to obtain sin(t) in terms of x, then write cos(t) = cot(t) sin(t). The
identity 1 + cot2(t) = csc2(t) holds for all t in (0, π) and relates cot(t) and csc(t) = 1

sin(t) .

Substituting cot(t) = 2x, we get 1 + (2x)2 = csc2(t), or csc(t) = ±
√

4x2 + 1. Since t is
between 0 and π, csc(t) > 0, so csc(t) =

√
4x2 + 1 which gives sin(t) = 1√

4x2+1
. Hence,

cos(arccot(2x)) = cos(t) = cot(t) sin(t) =
2x√

4x2 + 1

Since arccot(2x) is defined for all real numbers x and we encountered no additional
restrictions on t, we have cos (arccot(2x)) = 2x√

4x2+1
for all real numbers x.

The last two functions to invert are secant and cosecant. A portion of each of their graphs, which
were first discussed in Subsection 10.5.2, are given below with the fundamental cycles highlighted.

x

y

The graph of y = sec(x).

x

y

The graph of y = csc(x).

It is clear from the graph of secant that we cannot find one single continuous piece of its graph
which covers its entire range of (−∞,−1]∪ [1,∞) and restricts the domain of the function so that it
is one-to-one. The same is true for cosecant. Thus in order to define the arcsecant and arccosecant
functions, we must settle for a piecewise approach wherein we choose one piece to cover the top
of the range, namely [1,∞), and another piece to cover the bottom, namely (−∞,−1]. There are
two generally accepted ways make these choices which restrict the domains of these functions so
that they are one-to-one. One approach simplifies the Trigonometry associated with the inverse
functions, but complicates the Calculus; the other makes the Calculus easier, but the Trigonometry
less so. We present both points of view.
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10.6.1 Inverses of Secant and Cosecant: Trigonometry Friendly Approach

In this subsection, we restrict the secant and cosecant functions to coincide with the restrictions
on cosine and sine, respectively. For f(x) = sec(x), we restrict the domain to

[
0, π2

)
∪
(
π
2 , π

]

x

y

π
2

π

−1

1

f(x) = sec(x) on
ˆ
0, π

2

´
∪
`
π
2
, π
˜ reflect across y = x

−−−−−−−−−−−−→
switch x and y coordinates

x

y

π
2

π

−1 1

f−1(x) = arcsec(x)

and we restrict g(x) = csc(x) to
[
−π

2 , 0
)
∪
(
0, π2

]
.

x

y

−π
2

π
2

−1

1

g(x) = csc(x) on
ˆ
−π

2
, 0
´
∪
`
0, π

2

˜ reflect across y = x
−−−−−−−−−−−−→

switch x and y coordinates

x

y

−π
2

π
2

−1 1

g−1(x) = arccsc(x)

Note that for both arcsecant and arccosecant, the domain is (−∞,−1] ∪ [1,∞). Taking a page
from Section 2.2, we can rewrite this as {x : |x| ≥ 1}. This is often done in Calculus textbooks, so
we include it here for completeness. Using these definitions, we get the following properties of the
arcsecant and arccosecant functions.



828 Foundations of Trigonometry

Theorem 10.28. Properties of the Arcsecant and Arccosecant Functionsa

• Properties of F (x) = arcsec(x)

– Domain: {x : |x| ≥ 1} = (−∞,−1] ∪ [1,∞)

– Range:
[
0, π2

)
∪
(
π
2 , π

]
– as x→ −∞, arcsec(x)→ π

2
+; as x→∞, arcsec(x)→ π

2
−

– arcsec(x) = t if and only if 0 ≤ t < π
2 or π

2 < t ≤ π and sec(t) = x

– arcsec(x) = arccos
(

1
x

)
provided |x| ≥ 1

– sec (arcsec(x)) = x provided |x| ≥ 1

– arcsec(sec(x)) = x provided 0 ≤ x < π
2 or π

2 < x ≤ π

• Properties of G(x) = arccsc(x)

– Domain: {x : |x| ≥ 1} = (−∞,−1] ∪ [1,∞)

– Range:
[
−π

2 , 0
)
∪
(
0, π2

]
– as x→ −∞, arccsc(x)→ 0−; as x→∞, arccsc(x)→ 0+

– arccsc(x) = t if and only if −π
2 ≤ t < 0 or 0 < t ≤ π

2 and csc(t) = x

– arccsc(x) = arcsin
(

1
x

)
provided |x| ≥ 1

– csc (arccsc(x)) = x provided |x| ≥ 1

– arccsc(csc(x)) = x provided −π
2 ≤ x < 0 or 0 < x ≤ π

2

– additionally, arccosecant is odd
a. . . assuming the “Trigonometry Friendly” ranges are used.

Example 10.6.3.

1. Find the exact values of the following.

(a) arcsec(2) (b) arccsc(−2) (c) arcsec
(
sec
(

5π
4

))
(d) cot (arccsc (−3))

2. Rewrite the following as algebraic expressions of x and state the domain on which the equiv-
alence is valid.

(a) tan(arcsec(x)) (b) cos(arccsc(4x))
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Solution.

1. (a) Using Theorem 10.28, we have arcsec(2) = arccos
(

1
2

)
= π

3 .

(b) Once again, Theorem 10.28 comes to our aid giving arccsc(−2) = arcsin
(
−1

2

)
= −π

6 .

(c) Since 5π
4 doesn’t fall between 0 and π

2 or π
2 and π, we cannot use the inverse property

stated in Theorem 10.28. We can, nevertheless, begin by working ‘inside out’ which
yields arcsec

(
sec
(

5π
4

))
= arcsec(−

√
2) = arccos

(
−
√

2
2

)
= 3π

4 .

(d) One way to begin to simplify cot (arccsc (−3)) is to let t = arccsc(−3). Then, csc(t) = −3
and, since this is negative, we have that t lies in the interval

[
−π

2 , 0
)
. We are after

cot (arccsc (−3)) = cot(t), so we use the Pythagorean Identity 1 + cot2(t) = csc2(t).
Substituting, we have 1 + cot2(t) = (−3)2, or cot(t) = ±

√
8 = ±2

√
2. Since −π

2 ≤ t < 0,
cot(t) < 0, so we get cot (arccsc (−3)) = −2

√
2.

2. (a) We begin simplifying tan(arcsec(x)) by letting t = arcsec(x). Then, sec(t) = x for t in[
0, π2

)
∪
(
π
2 , π

]
, and we seek a formula for tan(t). Since tan(t) is defined for all t values

under consideration, we have no additional restrictions on t. To relate sec(t) to tan(t), we
use the identity 1+tan2(t) = sec2(t). This is valid for all values of t under consideration,
and when we substitute sec(t) = x, we get 1 + tan2(t) = x2. Hence, tan(t) = ±

√
x2 − 1.

If t belongs to
[
0, π2

)
then tan(t) ≥ 0; if, on the the other hand, t belongs to

(
π
2 , π

]
then

tan(t) ≤ 0. As a result, we get a piecewise defined function for tan(t)

tan(t) =

{ √
x2 − 1, if 0 ≤ t < π

2

−
√
x2 − 1, if π

2 < t ≤ π

Now we need to determine what these conditions on t mean for x. Since x = sec(t),
when 0 ≤ t < π

2 , x ≥ 1, and when π
2 < t ≤ π, x ≤ −1. Since we encountered no further

restrictions on t, the equivalence below holds for all x in (−∞,−1] ∪ [1,∞).

tan(arcsec(x)) =

{ √
x2 − 1, if x ≥ 1

−
√
x2 − 1, if x ≤ −1

(b) To simplify cos(arccsc(4x)), we start by letting t = arccsc(4x). Then csc(t) = 4x for t in[
−π

2 , 0
)
∪
(
0, π2

]
, and we now set about finding an expression for cos(arccsc(4x)) = cos(t).

Since cos(t) is defined for all t, we do not encounter any additional restrictions on t.
From csc(t) = 4x, we get sin(t) = 1

4x , so to find cos(t), we can make use if the identity
cos2(t) + sin2(t) = 1. Substituting sin(t) = 1

4x gives cos2(t) +
(

1
4x

)2 = 1. Solving, we get

cos(t) = ±
√

16x2 − 1
16x2

= ±
√

16x2 − 1
4|x|

Since t belongs to
[
−π

2 , 0
)
∪
(
0, π2

]
, we know cos(t) ≥ 0, so we choose cos(t) =

√
16−x2

4|x| .
(The absolute values here are necessary, since x could be negative.) To find the values for



830 Foundations of Trigonometry

which this equivalence is valid, we look back at our original substution, t = arccsc(4x).
Since the domain of arccsc(x) requires its argument x to satisfy |x| ≥ 1, the domain of
arccsc(4x) requires |4x| ≥ 1. Using Theorem 2.4, we rewrite this inequality and solve
to get x ≤ −1

4 or x ≥ 1
4 . Since we had no additional restrictions on t, the equivalence

cos(arccsc(4x)) =
√

16x2−1
4|x| holds for all x in

(
−∞,−1

4

]
∪
[

1
4 ,∞

)
.

10.6.2 Inverses of Secant and Cosecant: Calculus Friendly Approach

In this subsection, we restrict f(x) = sec(x) to
[
0, π2

)
∪
[
π, 3π

2

)

x

y

π
2

π 3π
2

−1

1

f(x) = sec(x) on
ˆ
0, π

2

´
∪
ˆ
π, 3π

2

´ reflect across y = x
−−−−−−−−−−−−→

switch x and y coordinates

x

y

π
2

π

3π
2

−1 1

f−1(x) = arcsec(x)

and we restrict g(x) = csc(x) to
(
0, π2

]
∪
(
π, 3π

2

]
.

x

y

π
2

π 3π
2

−1

1

g(x) = csc(x) on
`
0, π

2

˜
∪
`
π, 3π

2

˜ reflect across y = x
−−−−−−−−−−−−→

switch x and y coordinates

x

y

π
2

π

3π
2

−1 1

g−1(x) = arccsc(x)

Using these definitions, we get the following result.
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Theorem 10.29. Properties of the Arcsecant and Arccosecant Functionsa

• Properties of F (x) = arcsec(x)

– Domain: {x : |x| ≥ 1} = (−∞,−1] ∪ [1,∞)

– Range:
[
0, π2

)
∪
[
π, 3π

2

)
– as x→ −∞, arcsec(x)→ 3π

2

−; as x→∞, arcsec(x)→ π
2
−

– arcsec(x) = t if and only if 0 ≤ t < π
2 or π ≤ t < 3π

2 and sec(t) = x

– arcsec(x) = arccos
(

1
x

)
for x ≥ 1 onlyb

– sec (arcsec(x)) = x provided |x| ≥ 1

– arcsec(sec(x)) = x provided 0 ≤ x < π
2 or π ≤ x < 3π

2

• Properties of G(x) = arccsc(x)

– Domain: {x : |x| ≥ 1} = (−∞,−1] ∪ [1,∞)

– Range:
(
0, π2

]
∪
(
π, 3π

2

]
– as x→ −∞, arccsc(x)→ π+; as x→∞, arccsc(x)→ 0+

– arccsc(x) = t if and only if 0 < t ≤ π
2 or π < t ≤ 3π

2 and csc(t) = x

– arccsc(x) = arcsin
(

1
x

)
for x ≥ 1 onlyc

– csc (arccsc(x)) = x provided |x| ≥ 1

– arccsc(csc(x)) = x provided 0 < x ≤ π
2 or π < x ≤ 3π

2

a. . . assuming the “Calculus Friendly” ranges are used.
bCompare this with the similar result in Theorem 10.28.
cCompare this with the similar result in Theorem 10.28.

Our next example is a duplicate of Example 10.6.3. The interested reader is invited to compare
and contrast the solution to each.

Example 10.6.4.

1. Find the exact values of the following.

(a) arcsec(2) (b) arccsc(−2) (c) arcsec
(
sec
(

5π
4

))
(d) cot (arccsc (−3))

2. Rewrite the following as algebraic expressions of x and state the domain on which the equiv-
alence is valid.

(a) tan(arcsec(x)) (b) cos(arccsc(4x))
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Solution.

1. (a) Since 2 ≥ 1, we may invoke Theorem 10.29 to get arcsec(2) = arccos
(

1
2

)
= π

3 .

(b) Unfortunately, −2 is not greater to or equal to 1, so we cannot apply Theorem 10.29 to
arccsc(−2) and convert this into an arcsine problem. Instead, we appeal to the definition.
The real number t = arccsc(−2) lies in

(
0, π2

]
∪
(
π, 3π

2

]
and satisfies csc(t) = −2. The t

we’re after is t = 7π
6 , so arccsc(−2) = 7π

6 .

(c) Since 5π
4 lies between π and 3π

2 , we may apply Theorem 10.29 directly to simplify
arcsec

(
sec
(

5π
4

))
= 5π

4 . We encourage the reader to work this through using the defini-
tion as we have done in the previous examples to see how it goes.

(d) To simplify cot (arccsc (−3)) we let t = arccsc (−3) so that cot (arccsc (−3)) = cot(t).
We know csc(t) = −3, and since this is negative, t lies in

(
π, 3π

2

]
. Using the identity

1 + cot2(t) = csc2(t), we find 1 + cot2(t) = (−3)2 so that cot(t) = ±
√

8 = ±2
√

2. Since
t is in the interval

(
π, 3π

2

]
, we know cot(t) > 0. Our answer is cot (arccsc (−3)) = 2

√
2.

2. (a) We begin simplifying tan(arcsec(x)) by letting t = arcsec(x). Then, sec(t) = x for t in[
0, π2

)
∪
[
π, 3π

2

)
, and we seek a formula for tan(t). Since tan(t) is defined for all t values

under consideration, we have no additional restrictions on t. To relate sec(t) to tan(t), we
use the identity 1+tan2(t) = sec2(t). This is valid for all values of t under consideration,
and when we substitute sec(t) = x, we get 1 + tan2(t) = x2. Hence, tan(t) = ±

√
x2 − 1.

Since t lies in
[
0, π2

)
∪
[
π, 3π

2

)
, tan(t) ≥ 0, so we choose tan(t) =

√
x2 − 1. Since we found

no additional restrictions on t, the equivalence tan(arcsec(x)) =
√
x2 − 1 holds for all x

in the domain of t = arcsec(x), namely (−∞,−1] ∪ [1,∞).

(b) To simplify cos(arccsc(4x)), we start by letting t = arccsc(4x). Then csc(t) = 4x for t in(
0, π2

]
∪
(
π, 3π

2

]
, and we now set about finding an expression for cos(arccsc(4x)) = cos(t).

Since cos(t) is defined for all t, we do not encounter any additional restrictions on t.
From csc(t) = 4x, we get sin(t) = 1

4x , so to find cos(t), we can make use if the identity
cos2(t) + sin2(t) = 1. Substituting sin(t) = 1

4x gives cos2(t) +
(

1
4x

)2 = 1. Solving, we get

cos(t) = ±
√

16x2 − 1
16x2

= ±
√

16x2 − 1
4|x|

If t lies in
(
0, π2

]
, then cos(t) ≥ 0, and we choose cos(t) =

√
16x2−1
4|x| . Otherwise, t belongs

to
(
π, 3π

2

]
in which case cos(t) ≤ 0, so, we choose cos(t) = −

√
16x2−1
4|x| This leads us to a

(momentarily) piecewise defined function for cos(t)

cos(t) =


√

16x2 − 1
4|x|

, if 0 ≤ t ≤ π
2

−
√

16x2 − 1
4|x|

, if π < t ≤ 3π
2
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We now see what these restrictions mean in terms of x. Since 4x = csc(t), we get that
for 0 ≤ t ≤ π

2 , 4x ≥ 1, or x ≥ 1
4 . In this case, we can simplify |x| = x so

cos(t) =
√

16x2 − 1
4|x|

=
√

16x2 − 1
4x

Similarly, for π < t ≤ 3π
2 , we get 4x ≤ −1, or x ≤ −1

4 . In this case, |x| = −x, so we also
get

cos(t) = −
√

16x2 − 1
4|x|

= −
√

16x2 − 1
4(−x)

=
√

16x2 − 1
4x

Hence, in all cases, cos(arccsc(4x)) =
√

16x2−1
4x , and this equivalence is valid for all x in

the domain of t = arccsc(4x), namely
(
−∞,−1

4

]
∪
[

1
4 ,∞

)
10.6.3 Calculators and the Inverse Circular Functions.

In the sections to come, we will have need to approximate the values of the inverse circular functions.
On most calculators, only the arcsine, arccosine and arctangent functions are available and they
are usually labeled as sin−1, cos−1 and tan−1, respectively. If we are asked to approximate these
values, it is a simple matter to punch up the appropriate decimal on the calculator. If we are asked
for an arccotangent, arcsecant or arccosecant, however, we often need to employ some ingenuity, as
our next example illustrates.

Example 10.6.5.

1. Use a calculator to approximate the following values to four decimal places.

(a) arccot(2) (b) arcsec(5) (c) arccot(−2) (d) arccsc
(
−3

2

)
2. Find the domain and range of the following functions. Check your answers using a calculator.

(a) f(x) =
π

2
− arccos

(x
5

)
(b) f(x) = 3 arctan (4x). (c) f(x) = arccot

(x
2

)
+ π

Solution.

1. (a) Since 2 > 0, we can use the property listed in Theorem 10.27 to rewrite arccot(2) as
arccot(2) = arctan

(
1
2

)
. In ‘radian’ mode, we find arccot(2) = arctan

(
1
2

)
≈ 0.4636.

(b) Since 5 ≥ 1, we can use the property from either Theorem 10.28 or Theorem 10.29 to
write arcsec(5) = arccos

(
1
5

)
≈ 1.3694.
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(c) Since the argument −2 is negative, we cannot directly apply Theorem 10.27 to help us
find arccot(−2). Let t = arccot(−2). Then t is a real number such that 0 < t < π
and cot(t) = −2. Moreover, since cot(t) < 0, we know π

2 < t < π. Geometrically, this
means t corresponds to a Quadrant II angle θ = t radians. This allows us to proceed
using a ‘reference angle’ approach. Consider α, the reference angle for θ, as pictured
below. By definition, α is an acute angle so 0 < α < π

2 , and the Reference Angle
Theorem, Theorem 10.2, tells us that cot(α) = 2. This means α = arccot(2) radians.
Since the argument of arccotangent is now a positive 2, we can use Theorem 10.27 to get
α = arccot(2) = arctan

(
1
2

)
radians. Since θ = π−α = π− arctan

(
1
2

)
≈ 2.6779 radians,

we get arccot(−2) ≈ 2.6779.

x

y

1

1

α

θ = arccot(−2) radians

Another way to attack the problem is to use arctan
(
−1

2

)
. By definition, the real number

t = arctan
(
−1

2

)
satisfies tan(t) = −1

2 with −π
2 < t < π

2 . Since tan(t) < 0, we know
more specifically that −π

2 < t < 0, so t corresponds to an angle β in Quadrant IV. To
find the value of arccot(−2), we once again visualize the angle θ = arccot(−2) radians
and note that it is a Quadrant II angle with tan(θ) = −1

2 . This means it is exactly π
units away from β, and we get θ = π + β = π + arctan

(
−1

2

)
≈ 2.6779 radians. Hence,

as before, arccot(−2) ≈ 2.6779.
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x

y

1

1

π

β

θ = arccot(−2) radians

(d) If the range of arccosecant is taken to be
[
−π

2 , 0
)
∪
(
0, π2

]
, we can use Theorem 10.28 to

get arccsc
(
−3

2

)
= arcsin

(
−2

3

)
≈ −0.7297. If, on the other hand, the range of arccosecant

is taken to be
(
0, π2

]
∪
(
π, 3π

2

]
, then we proceed as in the previous problem by letting

t = arccsc
(
−3

2

)
. Then t is a real number with csc(t) = −3

2 . Since csc(t) < 0, we have
that π < θ ≤ 3π

2 , so t corresponds to a Quadrant III angle, θ. As above, we let α be
the reference angle for θ. Then 0 < α < π

2 and csc(α) = 3
2 , which means α = arccsc

(
3
2

)
radians. Since the argument of arccosecant is now positive, we may use Theorem 10.29
to get α = arccsc

(
3
2

)
= arcsin

(
2
3

)
radians. Since θ = π + α = π + arcsin

(
2
3

)
≈ 3.8713

radians, arccsc
(
−3

2

)
≈ 3.8713.

x

y

1

1

α

θ = arccsc
`
− 3

2

´
radians
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2. (a) Since the domain of F (x) = arccos(x) is −1 ≤ x ≤ 1, we can find the domain of
f(x) = π

2 − arccos
(
x
5

)
by setting the argument of the arccosine, in this case x

5 , between
−1 and 1. Solving −1 ≤ x

5 ≤ 1 gives −5 ≤ x ≤ 5, so the domain is [−5, 5]. To determine
the range of f , we take a cue from Section 1.7. Three ‘key’ points on the graph of
F (x) = arccos(x) are (−1, π),

(
0, π2

)
and (1, 0) . Following the procedure outlined in

Theorem 1.7, we track these points to
(
−5,−π

2

)
, (0, 0) and

(
5, π2

)
. Plotting these values

tells us that the range5 of f is
[
−π

2 ,
π
2

]
. Our graph confirms our results.

(b) To find the domain and range of f(x) = 3 arctan (4x), we note that since the domain
of F (x) = arctan(x) is all real numbers, the only restrictions, if any, on the domain of
f(x) = 3 arctan (4x) come from the argument of the arctangent, in this case, 4x. Since
4x is defined for all real numbers, we have established that the domain of f is all real
numbers. To determine the range of f , we can, once again, appeal to Theorem 1.7.
Choosing our ‘key’ point to be (0, 0) and tracking the horizontal asymptotes y = −π

2
and y = π

2 , we find that the graph of y = f(x) = 3 arctan (4x) differs from the graph of
y = F (x) = arctan(x) by a horizontal compression by a factor of 4 and a vertical stretch
by a factor of 3. It is the latter which affects the range, producing a range of

(
−3π

2 ,
3π
2

)
.

We confirm our findings on the calculator below.

y = f(x) =
π

2
− arccos

(x
5

)
y = f(x) = 3 arctan (4x)

(c) To find the domain of g(x) = arccot
(
x
2

)
+ π, we proceed as above. Since the domain of

G(x) = arccot(x) is (−∞,∞), and x
2 is defined for all x, we get that the domain of g is

(−∞,∞) as well. As for the range, we note that the range of G(x) = arccot(x), like that
of F (x) = arctan(x), is limited by a pair of horizontal asymptotes, in this case y = 0
and y = π. Following Theorem 1.7, we graph y = g(x) = arccot

(
x
2

)
+ π starting with

y = G(x) = arccot(x) and first performing a horizontal expansion by a factor of 2 and
following that with a vertical shift upwards by π. This latter transformation is the one
which affects the range, making it now (π, 2π). To check this graphically, we encounter
a bit of a problem, since on many calculators, there is no shortcut button corresponding
to the arccotangent function. Taking a cue from number 1c, we attempt to rewrite
g(x) = arccot

(
x
2

)
+π in terms of the arctangent function. Using Theorem 10.27, we have

that arccot
(
x
2

)
= arctan

(
2
x

)
when x

2 > 0, or, in this case, when x > 0. Hence, for x > 0,
we have g(x) = arctan

(
2
x

)
+ π. When x

2 < 0, we can use the same argument in number
1c that gave us arccot(−2) = π + arctan

(
−1

2

)
to give us arccot

(
x
2

)
= π + arctan

(
2
x

)
.

5It also confirms our domain!
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Hence, for x < 0, g(x) = π+ arctan
(

2
x

)
+ π = arctan

(
2
x

)
+ 2π. What about x = 0? We

know g(0) = arccot(0) + π = π, and neither of the formulas for g involving arctangent
will produce this result.6 Hence, in order to graph y = g(x) on our calculators, we need
to write it as a piecewise defined function:

g(x) = arccot
(x

2

)
+ π =


arctan

(
2
x

)
+ 2π, if x < 0

π, if x = 0

arctan
(

2
x

)
+ π, if x > 0

We show the input and the result below.

y = g(x) in terms of arctangent y = g(x) = arccot
(
x
2

)
+ π

The inverse trigonometric functions are typically found in applications whenever the measure of an
angle is required. One such scenario is presented in the following example.

Example 10.6.6. 7 The roof on the house below has a ‘6/12 pitch’. This means that when viewed
from the side, the roof line has a rise of 6 feet over a run of 12 feet. Find the angle of inclination
from the bottom of the roof to the top of the roof. Express your answer in decimal degrees, rounded
to the nearest hundredth of a degree.

Front View Side View

Solution. If we divide the side view of the house down the middle, we find that the roof line forms
the hypotenuse of a right triangle with legs of length 6 feet and 12 feet. Using Theorem 10.10, we

6Without Calculus, of course . . .
7The authors would like to thank Dan Stitz for this problem and associated graphics.
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find the angle of inclination, labeled θ below, satisfies tan(θ) = 6
12 = 1

2 . Since θ is an acute angle,
we can use the arctangent function and we find θ = arctan

(
1
2

)
radians ≈ 26.56◦.

12 feet

6 feet

θ

10.6.4 Solving Equations Using the Inverse Trigonometric Functions.

In Sections 10.2 and 10.3, we learned how to solve equations like sin(θ) = 1
2 for angles θ and

tan(t) = −1 for real numbers t. In each case, we ultimately appealed to the Unit Circle and relied
on the fact that the answers corresponded to a set of ‘common angles’ listed on page 724. If, on
the other hand, we had been asked to find all angles with sin(θ) = 1

3 or solve tan(t) = −2 for
real numbers t, we would have been hard-pressed to do so. With the introduction of the inverse
trigonometric functions, however, we are now in a position to solve these equations. A good parallel
to keep in mind is how the square root function can be used to solve certain quadratic equations.
The equation x2 = 4 is a lot like sin(θ) = 1

2 in that it has friendly, ‘common value’ answers x = ±2.
The equation x2 = 7, on the other hand, is a lot like sin(θ) = 1

3 . We know8 there are answers, but
we can’t express them using ‘friendly’ numbers.9 To solve x2 = 7, we make use of the square root
function and write x = ±

√
7. We can certainly approximate these answers using a calculator, but

as far as exact answers go, we leave them as x = ±
√

7. In the same way, we will use the arcsine
function to solve sin(θ) = 1

3 , as seen in the following example.

Example 10.6.7. Solve the following equations.

1. Find all angles θ for which sin(θ) = 1
3 .

2. Find all real numbers t for which tan(t) = −2

3. Solve sec(x) = −5
3 for x.

Solution.

1. If sin(θ) = 1
3 , then the terminal side of θ, when plotted in standard position, intersects the

Unit Circle at y = 1
3 . Geometrically, we see that this happens at two places: in Quadrant I

and Quadrant II. If we let α denote the acute solution to the equation, then all the solutions
8How do we know this again?
9This is all, of course, a matter of opinion. For the record, the authors find ±

√
7 just as ‘nice’ as ±2.
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to this equation in Quadrant I are coterminal with α, and α serves as the reference angle for
all of the solutions to this equation in Quadrant II.

x

y

1

1

1
3 α = arcsin

`
1
3

´
radians

x

y

1

1

1
3α

Since 1
3 isn’t the sine of any of the ‘common angles’ discussed earlier, we use the arcsine

functions to express our answers. The real number t = arcsin
(

1
3

)
is defined so it satisfies

0 < t < π
2 with sin(t) = 1

3 . Hence, α = arcsin
(

1
3

)
radians. Since the solutions in Quadrant I

are all coterminal with α, we get part of our solution to be θ = α + 2πk = arcsin
(

1
3

)
+ 2πk

for integers k. Turning our attention to Quadrant II, we get one solution to be π−α. Hence,
the Quadrant II solutions are θ = π − α+ 2πk = π − arcsin

(
1
3

)
+ 2πk, for integers k.

2. We may visualize the solutions to tan(t) = −2 as angles θ with tan(θ) = −2. Since tangent
is negative only in Quadrants II and IV, we focus our efforts there.

x

y

1

1

β = arctan(−2) radians

x

y

1

1

π β

Since −2 isn’t the tangent of any of the ‘common angles’, we need to use the arctangent
function to express our answers. The real number t = arctan(−2) satisfies tan(t) = −2 and
−π

2 < t < 0. If we let β = arctan(−2) radians, we see that all of the Quadrant IV solutions
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to tan(θ) = −2 are coterminal with β. Moreover, the solutions from Quadrant II differ by
exactly π units from the solutions in Quadrant IV, so all the solutions to tan(θ) = −2 are of
the form θ = β + πk = arctan(−2) + πk for some integer k. Switching back to the variable t,
we record our final answer to tan(t) = −2 as t = arctan(−2) + πk for integers k.

3. The last equation we are asked to solve, sec(x) = −5
3 , poses two immediate problems. First,

we are not told whether or not x represents an angle or a real number. We assume the latter,
but note that we will use angles and the Unit Circle to solve the equation regardless. Second,
as we have mentioned, there is no universally accepted range of the arcsecant function. For
that reason, we adopt the advice given in Section 10.3 and convert this to the cosine problem
cos(x) = −3

5 . Adopting an angle approach, we consider the equation cos(θ) = −3
5 and note

that our solutions lie in Quadrants II and III. Since −3
5 isn’t the cosine of any of the ‘common

angles’, we’ll need to express our solutions in terms of the arccosine function. The real number
t = arccos

(
−3

5

)
is defined so that π

2 < t < π with cos(t) = −3
5 . If we let β = arccos

(
−3

5

)
radians, we see that β is a Quadrant II angle. To obtain a Quadrant III angle solution,
we may simply use −β = − arccos

(
−3

5

)
. Since all angle solutions are coterminal with β

or −β, we get our solutions to cos(θ) = −3
5 to be θ = β + 2πk = arccos

(
−3

5

)
+ 2πk or

θ = −β + 2πk = − arccos
(
−3

5

)
+ 2πk for integers k. Switching back to the variable x, we

record our final answer to sec(x) = −5
3 as x = arccos

(
−3

5

)
+ 2πk or x = − arccos

(
−3

5

)
+ 2πk

for integers k.

x

y

1

1

β = arccos
`
− 3

5

´
radians

x

y

1

1

β = arccos
`
− 3

5

´
radians

−β = − arccos
`
− 3

5

´
radians

The reader is encouraged to check the answers found in Example 10.6.7 - both analytically and
with the calculator (see Section 10.6.3). With practice, the inverse trigonometric functions will
become as familiar to you as the square root function. Speaking of practice . . .
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10.6.5 Exercises

In Exercises 1 - 40, find the exact value.

1. arcsin (−1) 2. arcsin

(
−
√

3
2

)
3. arcsin

(
−
√

2
2

)
4. arcsin

(
−1

2

)

5. arcsin (0) 6. arcsin
(

1
2

)
7. arcsin

(√
2

2

)
8. arcsin

(√
3

2

)

9. arcsin (1) 10. arccos (−1) 11. arccos

(
−
√

3
2

)
12. arccos

(
−
√

2
2

)

13. arccos
(
−1

2

)
14. arccos (0) 15. arccos

(
1
2

)
16. arccos

(√
2

2

)

17. arccos

(√
3

2

)
18. arccos (1) 19. arctan

(
−
√

3
)

20. arctan (−1)

21. arctan

(
−
√

3
3

)
22. arctan (0) 23. arctan

(√
3

3

)
24. arctan (1)

25. arctan
(√

3
)

26. arccot
(
−
√

3
)

27. arccot (−1) 28. arccot

(
−
√

3
3

)

29. arccot (0) 30. arccot

(√
3

3

)
31. arccot (1) 32. arccot

(√
3
)

33. arcsec (2) 34. arccsc (2) 35. arcsec
(√

2
)

36. arccsc
(√

2
)

37. arcsec

(
2
√

3
3

)
38. arccsc

(
2
√

3
3

)
39. arcsec (1) 40. arccsc (1)

In Exercises 41 - 48, assume that the range of arcsecant is
[
0, π2

)
∪
[
π, 3π

2

)
and that the range of

arccosecant is
(
0, π2

]
∪
(
π, 3π

2

]
when finding the exact value.

41. arcsec (−2) 42. arcsec
(
−
√

2
)

43. arcsec

(
−2
√

3
3

)
44. arcsec (−1)

45. arccsc (−2) 46. arccsc
(
−
√

2
)

47. arccsc

(
−2
√

3
3

)
48. arccsc (−1)
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In Exercises 49 - 56, assume that the range of arcsecant is
[
0, π2

)
∪
(
π
2 , π

]
and that the range of

arccosecant is
[
−π

2 , 0
)
∪
(
0, π2

]
when finding the exact value.

49. arcsec (−2) 50. arcsec
(
−
√

2
)

51. arcsec

(
−2
√

3
3

)
52. arcsec (−1)

53. arccsc (−2) 54. arccsc
(
−
√

2
)

55. arccsc

(
−2
√

3
3

)
56. arccsc (−1)

In Exercises 57 - 86, find the exact value or state that it is undefined.

57. sin
(

arcsin
(

1
2

))
58. sin

(
arcsin

(
−
√

2
2

))
59. sin

(
arcsin

(
3
5

))

60. sin (arcsin (−0.42)) 61. sin
(

arcsin
(

5
4

))
62. cos

(
arccos

(√
2

2

))

63. cos
(

arccos
(
−1

2

))
64. cos

(
arccos

(
5
13

))
65. cos (arccos (−0.998))

66. cos (arccos (π)) 67. tan (arctan (−1)) 68. tan
(
arctan

(√
3
))

69. tan
(

arctan
(

5
12

))
70. tan (arctan (0.965)) 71. tan (arctan (3π))

72. cot (arccot (1)) 73. cot
(
arccot

(
−
√

3
))

74. cot
(

arccot
(
− 7

24

))
75. cot (arccot (−0.001)) 76. cot

(
arccot

(
17π
4

))
77. sec (arcsec (2))

78. sec (arcsec (−1)) 79. sec
(

arcsec
(

1
2

))
80. sec (arcsec (0.75))

81. sec (arcsec (117π)) 82. csc
(
arccsc

(√
2
))

83. csc

(
arccsc

(
−2
√

3
3

))

84. csc

(
arccsc

(√
2

2

))
85. csc (arccsc (1.0001)) 86. csc

(
arccsc

(π
4

))
In Exercises 87 - 106, find the exact value or state that it is undefined.

87. arcsin
(

sin
(π

6

))
88. arcsin

(
sin
(
−π

3

))
89. arcsin

(
sin
(

3π
4

))
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90. arcsin
(

sin
(

11π
6

))
91. arcsin

(
sin
(

4π
3

))
92. arccos

(
cos
(π

4

))
93. arccos

(
cos
(

2π
3

))
94. arccos

(
cos
(

3π
2

))
95. arccos

(
cos
(
−π

6

))
96. arccos

(
cos
(

5π
4

))
97. arctan

(
tan

(π
3

))
98. arctan

(
tan

(
−π

4

))
99. arctan (tan (π)) 100. arctan

(
tan

(π
2

))
101. arctan

(
tan

(
2π
3

))
102. arccot

(
cot
(π

3

))
103. arccot

(
cot
(
−π

4

))
104. arccot (cot (π))

105. arccot
(

cot
(π

2

))
106. arccot

(
cot
(

2π
3

))
In Exercises 107 - 118, assume that the range of arcsecant is

[
0, π2

)
∪
[
π, 3π

2

)
and that the range of

arccosecant is
(
0, π2

]
∪
(
π, 3π

2

]
when finding the exact value.

107. arcsec
(

sec
(π

4

))
108. arcsec

(
sec
(

4π
3

))
109. arcsec

(
sec
(

5π
6

))

110. arcsec
(

sec
(
−π

2

))
111. arcsec

(
sec
(

5π
3

))
112. arccsc

(
csc
(π

6

))
113. arccsc

(
csc
(

5π
4

))
114. arccsc

(
csc
(

2π
3

))
115. arccsc

(
csc
(
−π

2

))
116. arccsc

(
csc
(

11π
6

))
117. arcsec

(
sec
(

11π
12

))
118. arccsc

(
csc
(

9π
8

))
In Exercises 119 - 130, assume that the range of arcsecant is

[
0, π2

)
∪
(
π
2 , π

]
and that the range of

arccosecant is
[
−π

2 , 0
)
∪
(
0, π2

]
when finding the exact value.

119. arcsec
(

sec
(π

4

))
120. arcsec

(
sec
(

4π
3

))
121. arcsec

(
sec
(

5π
6

))

122. arcsec
(

sec
(
−π

2

))
123. arcsec

(
sec
(

5π
3

))
124. arccsc

(
csc
(π

6

))
125. arccsc

(
csc
(

5π
4

))
126. arccsc

(
csc
(

2π
3

))
127. arccsc

(
csc
(
−π

2

))
128. arccsc

(
csc
(

11π
6

))
129. arcsec

(
sec
(

11π
12

))
130. arccsc

(
csc
(

9π
8

))
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In Exercises 131 - 154, find the exact value or state that it is undefined.

131. sin
(

arccos
(
−1

2

))
132. sin

(
arccos

(
3
5

))
133. sin (arctan (−2))

134. sin
(
arccot

(√
5
))

135. sin (arccsc (−3)) 136. cos
(

arcsin
(
− 5

13

))
137. cos

(
arctan

(√
7
))

138. cos (arccot (3)) 139. cos (arcsec (5))

140. tan

(
arcsin

(
−2
√

5
5

))
141. tan

(
arccos

(
−1

2

))
142. tan

(
arcsec

(
5
3

))

143. tan (arccot (12)) 144. cot
(

arcsin
(

12
13

))
145. cot

(
arccos

(√
3

2

))

146. cot
(
arccsc

(√
5
))

147. cot (arctan (0.25)) 148. sec

(
arccos

(√
3

2

))

149. sec
(

arcsin
(
−12

13

))
150. sec (arctan (10)) 151. sec

(
arccot

(
−
√

10
10

))

152. csc (arccot (9)) 153. csc
(

arcsin
(

3
5

))
154. csc

(
arctan

(
−2

3

))
In Exercises 155 - 164, find the exact value or state that it is undefined.

155. sin
(

arcsin
(

5
13

)
+
π

4

)
156. cos (arcsec(3) + arctan(2))

157. tan
(

arctan(3) + arccos
(
−3

5

))
158. sin

(
2 arcsin

(
−4

5

))

159. sin
(

2arccsc
(

13
5

))
160. sin (2 arctan (2))

161. cos
(

2 arcsin
(

3
5

))
162. cos

(
2arcsec

(
25
7

))

163. cos
(
2arccot

(
−
√

5
))

164. sin
(

arctan(2)
2

)
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In Exercises 165 - 184, rewrite the quantity as algebraic expressions of x and state the domain on
which the equivalence is valid.

165. sin (arccos (x)) 166. cos (arctan (x)) 167. tan (arcsin (x))

168. sec (arctan (x)) 169. csc (arccos (x)) 170. sin (2 arctan (x))

171. sin (2 arccos (x)) 172. cos (2 arctan (x)) 173. sin(arccos(2x))

174. sin
(

arccos
(x

5

))
175. cos

(
arcsin

(x
2

))
176. cos (arctan (3x))

177. sin(2 arcsin(7x)) 178. sin

(
2 arcsin

(
x
√

3
3

))

179. cos(2 arcsin(4x)) 180. sec(arctan(2x)) tan(arctan(2x))

181. sin (arcsin(x) + arccos(x)) 182. cos (arcsin(x) + arctan(x))

183. tan (2 arcsin(x)) 184. sin
(

1
2

arctan(x)
)

185. If sin(θ) =
x

2
for −π

2
< θ <

π

2
, find an expression for θ + sin(2θ) in terms of x.

186. If tan(θ) =
x

7
for −π

2
< θ <

π

2
, find an expression for

1
2
θ − 1

2
sin(2θ) in terms of x.

187. If sec(θ) =
x

4
for 0 < θ <

π

2
, find an expression for 4 tan(θ)− 4θ in terms of x.

In Exercises 188 - 207, solve the equation using the techniques discussed in Example 10.6.7 then
approximate the solutions which lie in the interval [0, 2π) to four decimal places.

188. sin(x) =
7
11

189. cos(x) = −2
9

190. sin(x) = −0.569

191. cos(x) = 0.117 192. sin(x) = 0.008 193. cos(x) =
359
360

194. tan(x) = 117 195. cot(x) = −12 196. sec(x) =
3
2

197. csc(x) = −90
17

198. tan(x) = −
√

10 199. sin(x) =
3
8

200. cos(x) = − 7
16

201. tan(x) = 0.03 202. sin(x) = 0.3502
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203. sin(x) = −0.721 204. cos(x) = 0.9824 205. cos(x) = −0.5637

206. cot(x) =
1

117
207. tan(x) = −0.6109

In Exercises 208 - 210, find the two acute angles in the right triangle whose sides have the given
lengths. Express your answers using degree measure rounded to two decimal places.

208. 3, 4 and 5 209. 5, 12 and 13 210. 336, 527 and 625

211. A guy wire 1000 feet long is attached to the top of a tower. When pulled taut it touches level
ground 360 feet from the base of the tower. What angle does the wire make with the ground?
Express your answer using degree measure rounded to one decimal place.

212. At Cliffs of Insanity Point, The Great Sasquatch Canyon is 7117 feet deep. From that point,
a fire is seen at a location known to be 10 miles away from the base of the sheer canyon
wall. What angle of depression is made by the line of sight from the canyon edge to the fire?
Express your answer using degree measure rounded to one decimal place.

213. Shelving is being built at the Utility Muffin Research Library which is to be 14 inches deep.
An 18-inch rod will be attached to the wall and the underside of the shelf at its edge away
from the wall, forming a right triangle under the shelf to support it. What angle, to the
nearest degree, will the rod make with the wall?

214. A parasailor is being pulled by a boat on Lake Ippizuti. The cable is 300 feet long and the
parasailor is 100 feet above the surface of the water. What is the angle of elevation from the
boat to the parasailor? Express your answer using degree measure rounded to one decimal
place.

215. A tag-and-release program to study the Sasquatch population of the eponymous Sasquatch
National Park is begun. From a 200 foot tall tower, a ranger spots a Sasquatch lumbering
through the wilderness directly towards the tower. Let θ denote the angle of depression from
the top of the tower to a point on the ground. If the range of the rifle with a tranquilizer
dart is 300 feet, find the smallest value of θ for which the corresponding point on the ground
is in range of the rifle. Round your answer to the nearest hundreth of a degree.

In Exercises 216 - 221, rewrite the given function as a sinusoid of the form S(x) = A sin(ωx + φ)
using Exercises 35 and 36 in Section 10.5 for reference. Approximate the value of φ (which is in
radians, of course) to four decimal places.

216. f(x) = 5 sin(3x) + 12 cos(3x) 217. f(x) = 3 cos(2x) + 4 sin(2x)

218. f(x) = cos(x)− 3 sin(x) 219. f(x) = 7 sin(10x)− 24 cos(10x)
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220. f(x) = − cos(x)− 2
√

2 sin(x) 221. f(x) = 2 sin(x)− cos(x)

In Exercises 222 - 233, find the domain of the given function. Write your answers in interval
notation.

222. f(x) = arcsin(5x) 223. f(x) = arccos
(

3x− 1
2

)
224. f(x) = arcsin

(
2x2
)

225. f(x) = arccos
(

1
x2 − 4

)
226. f(x) = arctan(4x) 227. f(x) = arccot

(
2x

x2 − 9

)
228. f(x) = arctan(ln(2x− 1)) 229. f(x) = arccot(

√
2x− 1) 230. f(x) = arcsec(12x)

231. f(x) = arccsc(x+ 5) 232. f(x) = arcsec
(
x3

8

)
233. f(x) = arccsc

(
e2x
)

234. Show that arcsec(x) = arccos
(

1
x

)
for |x| ≥ 1 as long as we use

[
0,
π

2

)
∪
(π

2
, π
]

as the range

of f(x) = arcsec(x).

235. Show that arccsc(x) = arcsin
(

1
x

)
for |x| ≥ 1 as long as we use

[
−π

2
, 0
)
∪
(

0,
π

2

]
as the range

of f(x) = arccsc(x).

236. Show that arcsin(x) + arccos(x) =
π

2
for −1 ≤ x ≤ 1.

237. Discuss with your classmates why arcsin
(

1
2

)
6= 30◦.

238. Use the following picture and the series of exercises on the next page to show that

arctan(1) + arctan(2) + arctan(3) = π

x

y

A(0, 1)

O(0, 0) B(1, 0) C(2, 0)

D(2, 3)

α β γ
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(a) Clearly 4AOB and 4BCD are right triangles because the line through O and A and
the line through C and D are perpendicular to the x-axis. Use the distance formula to
show that 4BAD is also a right triangle (with ∠BAD being the right angle) by showing
that the sides of the triangle satisfy the Pythagorean Theorem.

(b) Use 4AOB to show that α = arctan(1)

(c) Use 4BAD to show that β = arctan(2)

(d) Use 4BCD to show that γ = arctan(3)

(e) Use the fact that O, B and C all lie on the x-axis to conclude that α+ β+ γ = π. Thus
arctan(1) + arctan(2) + arctan(3) = π.



10.6 The Inverse Trigonometric Functions 849

10.6.6 Answers

1. arcsin (−1) = −π
2

2. arcsin

(
−
√

3
2

)
= −π

3
3. arcsin

(
−
√

2
2

)
= −π

4

4. arcsin
(
−1

2

)
= −π

6
5. arcsin (0) = 0 6. arcsin

(
1
2

)
=
π

6

7. arcsin

(√
2

2

)
=
π

4
8. arcsin

(√
3

2

)
=
π

3
9. arcsin (1) =

π

2

10. arccos (−1) = π 11. arccos

(
−
√

3
2

)
=

5π
6

12. arccos

(
−
√

2
2

)
=

3π
4

13. arccos
(
−1

2

)
=

2π
3

14. arccos (0) =
π

2
15. arccos

(
1
2

)
=
π

3

16. arccos

(√
2

2

)
=
π

4
17. arccos

(√
3

2

)
=
π

6
18. arccos (1) = 0

19. arctan
(
−
√

3
)

= −π
3

20. arctan (−1) = −π
4

21. arctan

(
−
√

3
3

)
= −π

6

22. arctan (0) = 0 23. arctan

(√
3

3

)
=
π

6
24. arctan (1) =

π

4

25. arctan
(√

3
)

=
π

3
26. arccot

(
−
√

3
)

=
5π
6

27. arccot (−1) =
3π
4

28. arccot

(
−
√

3
3

)
=

2π
3

29. arccot (0) =
π

2
30. arccot

(√
3

3

)
=
π

3

31. arccot (1) =
π

4
32. arccot

(√
3
)

=
π

6
33. arcsec (2) =

π

3

34. arccsc (2) =
π

6
35. arcsec

(√
2
)

=
π

4
36. arccsc

(√
2
)

=
π

4

37. arcsec

(
2
√

3
3

)
=
π

6
38. arccsc

(
2
√

3
3

)
=
π

3
39. arcsec (1) = 0

40. arccsc (1) =
π

2
41. arcsec (−2) =

4π
3

42. arcsec
(
−
√

2
)

=
5π
4
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43. arcsec

(
−2
√

3
3

)
=

7π
6

44. arcsec (−1) = π 45. arccsc (−2) =
7π
6

46. arccsc
(
−
√

2
)

=
5π
4

47. arccsc

(
−2
√

3
3

)
=

4π
3

48. arccsc (−1) =
3π
2

49. arcsec (−2) =
2π
3

50. arcsec
(
−
√

2
)

=
3π
4

51. arcsec

(
−2
√

3
3

)
=

5π
6

52. arcsec (−1) = π 53. arccsc (−2) = −π
6

54. arccsc
(
−
√

2
)

= −π
4

55. arccsc

(
−2
√

3
3

)
= −π

3
56. arccsc (−1) = −π

2

57. sin
(

arcsin
(

1
2

))
=

1
2

58. sin

(
arcsin

(
−
√

2
2

))
= −
√

2
2

59. sin
(

arcsin
(

3
5

))
=

3
5

60. sin (arcsin (−0.42)) = −0.42

61. sin
(

arcsin
(

5
4

))
is undefined. 62. cos

(
arccos

(√
2

2

))
=
√

2
2

63. cos
(

arccos
(
−1

2

))
= −1

2
64. cos

(
arccos

(
5
13

))
=

5
13

65. cos (arccos (−0.998)) = −0.998 66. cos (arccos (π)) is undefined.

67. tan (arctan (−1)) = −1 68. tan
(
arctan

(√
3
))

=
√

3

69. tan
(

arctan
(

5
12

))
=

5
12

70. tan (arctan (0.965)) = 0.965

71. tan (arctan (3π)) = 3π 72. cot (arccot (1)) = 1

73. cot
(
arccot

(
−
√

3
))

= −
√

3 74. cot
(

arccot
(
− 7

24

))
= − 7

24

75. cot (arccot (−0.001)) = −0.001 76. cot
(

arccot
(

17π
4

))
=

17π
4

77. sec (arcsec (2)) = 2 78. sec (arcsec (−1)) = −1
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79. sec
(

arcsec
(

1
2

))
is undefined. 80. sec (arcsec (0.75)) is undefined.

81. sec
(

arcsec
(π

2

))
=
π

2
82. csc

(
arccsc

(√
2
))

=
√

2

83. csc

(
arccsc

(
−2
√

3
3

))
= −2

√
3

3
84. csc

(
arccsc

(√
2

2

))
is undefined.

85. csc (arccsc (1.0001)) = 1.0001 86. csc
(

arccsc
(π

4

))
is undefined.

87. arcsin
(

sin
(π

6

))
=
π

6
88. arcsin

(
sin
(
−π

3

))
= −π

3

89. arcsin
(

sin
(

3π
4

))
=
π

4
90. arcsin

(
sin
(

11π
6

))
= −π

6

91. arcsin
(

sin
(

4π
3

))
= −π

3
92. arccos

(
cos
(π

4

))
=
π

4

93. arccos
(

cos
(

2π
3

))
=

2π
3

94. arccos
(

cos
(

3π
2

))
=
π

2

95. arccos
(

cos
(
−π

6

))
=
π

6
96. arccos

(
cos
(

5π
4

))
=

3π
4

97. arctan
(

tan
(π

3

))
=
π

3
98. arctan

(
tan

(
−π

4

))
= −π

4

99. arctan (tan (π)) = 0 100. arctan
(

tan
(π

2

))
is undefined

101. arctan
(

tan
(

2π
3

))
= −π

3
102. arccot

(
cot
(π

3

))
=
π

3

103. arccot
(

cot
(
−π

4

))
=

3π
4

104. arccot (cot (π)) is undefined

105. arccot
(

cot
(

3π
2

))
=
π

2
106. arccot

(
cot
(

2π
3

))
=

2π
3

107. arcsec
(

sec
(π

4

))
=
π

4
108. arcsec

(
sec
(

4π
3

))
=

4π
3

109. arcsec
(

sec
(

5π
6

))
=

7π
6

110. arcsec
(

sec
(
−π

2

))
is undefined.

111. arcsec
(

sec
(

5π
3

))
=
π

3
112. arccsc

(
csc
(π

6

))
=
π

6
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113. arccsc
(

csc
(

5π
4

))
=

5π
4

114. arccsc
(

csc
(

2π
3

))
=
π

3

115. arccsc
(

csc
(
−π

2

))
=

3π
2

116. arccsc
(

csc
(

11π
6

))
=

7π
6

117. arcsec
(

sec
(

11π
12

))
=

13π
12

118. arccsc
(

csc
(

9π
8

))
=

9π
8

119. arcsec
(

sec
(π

4

))
=
π

4
120. arcsec

(
sec
(

4π
3

))
=

2π
3

121. arcsec
(

sec
(

5π
6

))
=

5π
6

122. arcsec
(

sec
(
−π

2

))
is undefined.

123. arcsec
(

sec
(

5π
3

))
=
π

3
124. arccsc

(
csc
(π

6

))
=
π

6

125. arccsc
(

csc
(

5π
4

))
= −π

4
126. arccsc

(
csc
(

2π
3

))
=
π

3

127. arccsc
(

csc
(
−π

2

))
= −π

2
128. arccsc

(
csc
(

11π
6

))
= −π

6

129. arcsec
(

sec
(

11π
12

))
=

11π
12

130. arccsc
(

csc
(

9π
8

))
= −π

8

131. sin
(

arccos
(
−1

2

))
=
√

3
2

132. sin
(

arccos
(

3
5

))
=

4
5

133. sin (arctan (−2)) = −2
√

5
5

134. sin
(
arccot

(√
5
))

=
√

6
6

135. sin (arccsc (−3)) = −1
3

136. cos
(

arcsin
(
− 5

13

))
=

12
13

137. cos
(
arctan

(√
7
))

=
√

2
4

138. cos (arccot (3)) =
3
√

10
10

139. cos (arcsec (5)) =
1
5

140. tan

(
arcsin

(
−2
√

5
5

))
= −2

141. tan
(

arccos
(
−1

2

))
= −
√

3 142. tan
(

arcsec
(

5
3

))
=

4
3

143. tan (arccot (12)) =
1
12

144. cot
(

arcsin
(

12
13

))
=

5
12
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145. cot

(
arccos

(√
3

2

))
=
√

3 146. cot
(
arccsc

(√
5
))

= 2

147. cot (arctan (0.25)) = 4 148. sec

(
arccos

(√
3

2

))
=

2
√

3
3

149. sec
(

arcsin
(
−12

13

))
=

13
5

150. sec (arctan (10)) =
√

101

151. sec

(
arccot

(
−
√

10
10

))
= −
√

11 152. csc (arccot (9)) =
√

82

153. csc
(

arcsin
(

3
5

))
=

5
3 154. csc

(
arctan

(
−2

3

))
= −
√

13
2

155. sin
(

arcsin
(

5
13

)
+
π

4

)
=

17
√

2
26

156. cos (arcsec(3) + arctan(2)) =
√

5− 4
√

10
15

157. tan
(

arctan(3) + arccos
(
−3

5

))
=

1
3

158. sin
(

2 arcsin
(
−4

5

))
= −24

25

159. sin
(

2arccsc
(

13
5

))
=

120
169

160. sin (2 arctan (2)) =
4
5

161. cos
(

2 arcsin
(

3
5

))
=

7
25

162. cos
(

2arcsec
(

25
7

))
= −527

625

163. cos
(
2arccot

(
−
√

5
))

=
2
3

164. sin
(

arctan(2)
2

)
=

√
5−
√

5
10

165. sin (arccos (x)) =
√

1− x2 for −1 ≤ x ≤ 1

166. cos (arctan (x)) =
1√

1 + x2
for all x

167. tan (arcsin (x)) =
x√

1− x2
for −1 < x < 1

168. sec (arctan (x)) =
√

1 + x2 for all x

169. csc (arccos (x)) =
1√

1− x2
for −1 < x < 1

170. sin (2 arctan (x)) =
2x

x2 + 1
for all x

171. sin (2 arccos (x)) = 2x
√

1− x2 for −1 ≤ x ≤ 1
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172. cos (2 arctan (x)) =
1− x2

1 + x2
for all x

173. sin(arccos(2x)) =
√

1− 4x2 for −1
2 ≤ x ≤

1
2

174. sin
(

arccos
(x

5

))
=
√

25− x2

5
for −5 ≤ x ≤ 5

175. cos
(

arcsin
(x

2

))
=
√

4− x2

2
for −2 ≤ x ≤ 2

176. cos (arctan (3x)) =
1√

1 + 9x2
for all x

177. sin(2 arcsin(7x)) = 14x
√

1− 49x2 for −1
7
≤ x ≤ 1

7

178. sin

(
2 arcsin

(
x
√

3
3

))
=

2x
√

3− x2

3
for −

√
3 ≤ x ≤

√
3

179. cos(2 arcsin(4x)) = 1− 32x2 for −1
4
≤ x ≤ 1

4

180. sec(arctan(2x)) tan(arctan(2x)) = 2x
√

1 + 4x2 for all x

181. sin (arcsin(x) + arccos(x)) = 1 for −1 ≤ x ≤ 1

182. cos (arcsin(x) + arctan(x)) =
√

1− x2 − x2

√
1 + x2

for −1 ≤ x ≤ 1

183. 10 tan (2 arcsin(x)) =
2x
√

1− x2

1− 2x2
for x in

(
−1,−

√
2

2

)
∪

(
−
√

2
2
,

√
2

2

)
∪

(√
2

2
, 1

)

184. sin
(

1
2

arctan(x)
)

=



√√
x2 + 1− 1
2
√
x2 + 1

for x ≥ 0

−

√√
x2 + 1− 1
2
√
x2 + 1

for x < 0

185. If sin(θ) =
x

2
for −π

2
< θ <

π

2
, then θ + sin(2θ) = arcsin

(x
2

)
+
x
√

4− x2

2

186. If tan(θ) =
x

7
for −π

2
< θ <

π

2
, then

1
2
θ − 1

2
sin(2θ) =

1
2

arctan
(x

7

)
− 7x
x2 + 49

10The equivalence for x = ±1 can be verified independently of the derivation of the formula, but Calculus is required
to fully understand what is happening at those x values. You’ll see what we mean when you work through the details
of the identity for tan(2t). For now, we exclude x = ±1 from our answer.
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187. If sec(θ) =
x

4
for 0 < θ <

π

2
, then 4 tan(θ)− 4θ =

√
x2 − 16− 4arcsec

(x
4

)
188. x = arcsin

(
7
11

)
+ 2πk or x = π − arcsin

(
7
11

)
+ 2πk, in [0, 2π), x ≈ 0.6898, 2.4518

189. x = arccos
(
−2

9

)
+ 2πk or x = − arccos

(
−2

9

)
+ 2πk, in [0, 2π), x ≈ 1.7949, 4.4883

190. x = π + arcsin(0.569) + 2πk or x = 2π − arcsin(0.569) + 2πk, in [0, 2π), x ≈ 3.7469, 5.6779

191. x = arccos(0.117) + 2πk or x = 2π − arccos(0.117) + 2πk, in [0, 2π), x ≈ 1.4535, 4.8297

192. x = arcsin(0.008) + 2πk or x = π − arcsin(0.008) + 2πk, in [0, 2π), x ≈ 0.0080, 3.1336

193. x = arccos
(

359
360

)
+ 2πk or x = 2π − arccos

(
359
360

)
+ 2πk, in [0, 2π), x ≈ 0.0746, 6.2086

194. x = arctan(117) + πk, in [0, 2π), x ≈ 1.56225, 4.70384

195. x = arctan
(
− 1

12

)
+ πk, in [0, 2π), x ≈ 3.0585, 6.2000

196. x = arccos
(

2
3

)
+ 2πk or x = 2π − arccos

(
2
3

)
+ 2πk, in [0, 2π), x ≈ 0.8411, 5.4422

197. x = π + arcsin
(

17
90

)
+ 2πk or x = 2π − arcsin

(
17
90

)
+ 2πk, in [0, 2π), x ≈ 3.3316, 6.0932

198. x = arctan
(
−
√

10
)

+ πk, in [0, 2π), x ≈ 1.8771, 5.0187

199. x = arcsin
(

3
8

)
+ 2πk or x = π − arcsin

(
3
8

)
+ 2πk, in [0, 2π), x ≈ 0.3844, 2.7572

200. x = arccos
(
− 7

16

)
+ 2πk or x = − arccos

(
− 7

16

)
+ 2πk, in [0, 2π), x ≈ 2.0236, 4.2596

201. x = arctan(0.03) + πk, in [0, 2π), x ≈ 0.0300, 3.1716

202. x = arcsin(0.3502) + 2πk or x = π − arcsin(0.3502) + 2πk, in [0, 2π), x ≈ 0.3578, 2.784

203. x = π + arcsin(0.721) + 2πk or x = 2π − arcsin(0.721) + 2πk, in [0, 2π), x ≈ 3.9468, 5.4780

204. x = arccos(0.9824) + 2πk or x = 2π − arccos(0.9824) + 2πk, in [0, 2π), x ≈ 0.1879, 6.0953

205. x = arccos(−0.5637) + 2πk or x = − arccos(−0.5637) + 2πk, in [0, 2π), x ≈ 2.1697, 4.1135

206. x = arctan(117) + πk, in [0, 2π), x ≈ 1.5622, 4.7038

207. x = arctan(−0.6109) + πk, in [0, 2π), x ≈ 2.5932, 5.7348
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208. 36.87◦ and 53.13◦ 209. 22.62◦ and 67.38◦ 210. 32.52◦ and 57.48◦

211. 68.9◦ 212. 7.7◦ 213. 51◦ 214. 19.5◦ 215. 41.81◦

216. f(x) = 5 sin(3x) + 12 cos(3x) = 13 sin
(

3x+ arcsin
(

12
13

))
≈ 13 sin(3x+ 1.1760)

217. f(x) = 3 cos(2x) + 4 sin(2x) = 5 sin
(

2x+ arcsin
(

3
5

))
≈ 5 sin(2x+ 0.6435)

218. f(x) = cos(x)− 3 sin(x) =
√

10 sin

(
x+ arccos

(
−3
√

10
10

))
≈
√

10 sin(x+ 2.8198)

219. f(x) = 7 sin(10x)− 24 cos(10x) = 25 sin
(

10x+ arcsin
(
−24

25

))
≈ 25 sin(10x− 1.2870)

220. f(x) = − cos(x)− 2
√

2 sin(x) = 3 sin
(
x+ π + arcsin

(
1
3

))
≈ 3 sin(x+ 3.4814)

221. f(x) = 2 sin(x)− cos(x) =
√

5 sin

(
x+ arcsin

(
−
√

5
5

))
≈
√

5 sin(x− 0.4636)

222.
[
−1

5
,
1
5

]
223.

[
−1

3
, 1
]

224.

[
−
√

2
2
,

√
2

2

]
225. (−∞,−

√
5] ∪ [−

√
3,
√

3] ∪ [
√

5,∞)

226. (−∞,∞) 227. (−∞,−3) ∪ (−3, 3) ∪ (3,∞)

228.
(

1
2
,∞
)

229.
[

1
2
,∞
)

230.
(
−∞,− 1

12

]
∪
[

1
12
,∞
)

231. (−∞,−6] ∪ [−4,∞)

232. (−∞,−2] ∪ [2,∞) 233. [0,∞)


